Verification of Service Level
Agreements with Markov Reward
Models

Farrel Lifson
Data Network Architecture Lab
Dept of Computer Science, University of Cape Town

Abstract— We review the usage of Markov
reward models and it’s associated performa-
bility logics in the determination of Service
Level Agreements. We examine the removal
of zero state rewards from Markov reward
models and suggest a refinement to prevent
the modification of the logical properties of
the model. We also introduce an alternate
methodology to be able to do model checking
using a suitable number to approximate zero.
We observe the error that this introduces
and observe some performance issues it intro-
duces to certain underlying model checking
techniques.

|. INTRODUCTION

Model checking refers to verifying
whether certain properties, expressed in a
formal logic, hold in system models. The
models are usually state transition systems
such as a Continuous Time Markov Chain
(CTMC). There are a number of logics
that can be used to specify properties, but
Continuous Reward Logic (CRL)[4] is the
most established and the one considered in
this paper.

The techniques used for verification
place limitations on the properties of the
model, such as non-positive rewards[4]
where the limitations are due to the nature
of the algorithm or the verification of both
reward and time bounds[1] where solutions
are computationally expensive.

Il. MARKOV REWARD MODELS

A Markov Reward Model (MRM) is a
Continuous Time Markov Chain with an
associated reward structure. The reward
structure, p, is a function that assigns to
each state s a reward p(s). When residing
for ¢ time units in state s, the system
acquires a total reward of p(s) - ¢, which

is added to a cumulative reward. For usage
in model checking a MRM also has a
labelling function, L, which maps to each
state a set of atomic propositions which that
state satisfies.

I1l. MODEL CHECKING AND
CONTINUOUS REWARD LoOGIC

Continuous Stochastic Reward Logic
(CSRL) is a logic defined in order to
represent constraints on the model with
both time and reward bounds. The syntax
of CSRL is comprised of State and Path
formula which are defined as

State-formulas & S
P[S<p(®)[Pap(p)
S<p(®): probability that & holds in

steady state is <Ip
Pap(p): probability that paths fulfill
pis dp

Path-formulas ¢ ::= X’ ®|®)} &

XTI ®: next state reached at time ¢t € I
and reward with r € J and fulfills
d

® Uﬂ ¥: & holds along the path until
¥ holds at time ¢t € I and reward

red
However the verification of both is com-
putationally complex[1], but the verifica-
tion of only the time constraints is possible.

When dealing strictly with time we use

a temporal sub-logic of CSRL which is

referred to as Continuous Stochastic Logic

(CSL). Conversely there is also a sub-

logic which deals only with rewards, the

previously mentioned Continuous Reward

Logic (CRL).

Verification of CSL[2] is done using a
number of different techniques involving

a|—|<1)|<I> \%

« graph theory to reduce the complexity

of the model

« numerical techniques such solving of

linear equations[3].

Verification of properties described in
CRL do not need any other specialised
techniques other than the ones mentioned
for CSL. CSRL has a property defined by
the Duality Theorem[4] which allows us to
transform the MRM in such a way that we
can swap the reward and time constraints
of the logic. The justification behind this
is that we can regard the progress of time
as the accumulation of rewards and the
same in reverse. The transformation of the
MRM is done in the following way where

p(s) # 0

1) Transform MRM M =
((S,R,L),p) into Mt =
((S,R/, L), p') with
« R'(s,s') = R(s,s)/p(s) -

rescale transition rates by reward
e p'(s) = 1/p(s) - invert the re-
ward structure
2) Transform CRL state formula & into
&~! by swapping reward and time
bounds : X5 — X{ and U, — U7
The duality theorem then states:

SatM(®) = Sat™M ™ (& 71)

where Sat™ (®) is the set of states in the
MRM M that satisfy state formula ®. This
Duality property allows us to verify a CRL
statement by transforming the statement
into CSL and then verifying this against
the CTMC that is produced by transform-
ing the MRM. When we only deal with
reward bounds in the state formula (CRL),
then the transformed formula will deal only
with time bounds (CSL). In cases when
there are both time and reward bounds,
as in CSRL, then there is no advantage
to the transformation. Note, however, that
the transformation is restricted to non-zero
rewards for otherwise, if p(s) = 0 then
R(s, s")/p(s) will be infinite.

IV. SERVICE LEVEL AGREEMENTS

One of the more appropriate practical
applications of performability is that of
Service Level Agreements(SLA), a contract
between two parties where one party guar-
antees a certain level of service for some

task. The party providing the contract could
easily estimate a service level by simple
approximation of his current computing
power, without taking into account failure
of components, differing load levels and so
forth. Using a formalism such as MRM and
combining that with CRL the provider is
able to better model their service ability as
well as verify whether they can meet or
exceed the service levels agreed upon.

The provider therefore has the ability to
model and verify both performance coupled
with the reliability of the system.

A. Interaction between Service Level Man-
agement and Markov Reward Models

According to the IT Information Library
(ITIL) guidelines[5] service management
can be broken up into a number of different
sections each dealing with certain facets of
the management and planning processes.
The natural area for MRM to be used
would be in the Development phase. The
Development phase is further split into
Service Design and Service Build & Test
units, which is a natural fit for the way we
will use MRMs.

During the Service Design phase, a suit-
able MRM would be specified and us-
ing analysis tools (in our case primarily
ETMCC) these MRM representing the sys-
tem would be checked (the Service Build
& Test phase). The process is cyclic so that
either the model can be modified to meet
the testing criteria or the criteria themselves
can be modified if the model is not flexible.

V. LIMITATIONS TO MODEL CHECKING
WITH MARKOV REWARD MODELS

In the symbolic solutions of model
checking, the area where we are most con-
cerned, a number of limitations are present
such as the presence of states with zero
reward, or the lack of multiple rewards. It
is these limitations and their implications
in constructing models that need further
exploration. Added to the limits of the
model itself, is the expressiveness of the
logic used to specify the constraints. We are
interested in looking at whether the logic
can sufficiently express properties that will
be useful in the constructing and verifica-
tion of SLAs.

A. Zero Reward States

One way of eliminating zero rewards
suggested by Beaudry[6] is to make all
zero reward states absorbing. This severely
limits the model as once a zero state is
reached the verification process is halted.
In models which enter zero reward states
early this will place a abound on the length
of time for which we can verify the model.
Ciardo et al.[7] expanded on the work of
Beaudry by defining a new MRM where
the zero reward states are removed from
the MRM and replaced with a probabilis-
tic switch without changing the behaviour
of the MRM. Wholesale removal of zero
reward states however can be dangerous in
model checking as we run the risk of mod-
ifying the logical property of the MRM.

Fig. 1. Removal of a zero reward state and loss of
logical property from a simple Markov chain.

Figure 1 shows a simple Markov chain
with states which satisfy either of the two
atomic propositions, black or white. If
the black state has zero reward and is re-
moved, it is possible that a CRL statement
that was valid previously (for instance any
CRL statement using white | black) is no
longer valid in the transformed chain as
black no longer exists and as such the
absorbing state will never be reached.

B. A Refinement to the Algorithm

In the process of model checking, the
requirements, expressed as statements in
CRL, are explicitly known in advance. By
examining the requirements beforehand we
can decide which zero reward states can
safely be removed without affecting the
logical properties of the MRM.

In the case of the CRL until operator
() the relevant logical component of the
statement is @ | ¥. We are only concerned
with states that satisfy ®, as ¥ is regarded
as a halting condition, i.e., once a W state is
reached all further states are unimportant.
Zero reward states which satisfy & can
safely be removed as they have no affect

on the cumulative reward and their removal
would not change the logical properties of
the model. By preventing the removal of
a zero reward state if it satisfies ¥, and
allowing the removal if it satisfies &, we
can prevent the logical properties of the
MRM from being altered.

V1. AN ALTERNATIVE APPROACH

As an alternative to eliminating zero re-
ward states, when doing so is not desirable,
we suggest replacing these states with a
small positive number, e << 0 which we
will use to approximate zero in the model.
However the addition of € will add an error
to the cumulative reward earned due to the
fact that some time ¢ spent in a zero reward
state an extra ¢ - ¢ reward is accumulated.
We note that the magnitude of the error
accumulated can be shown to be small
enough such that the accuracy of the model
is insignificantly affected and an example
illustrating this will follow in Section VII.

If we add € to all states in the MRM,
regardless of whether the state is a zero
reward state or not, then the accumulated
error will always be €-t. Using this method
ensures that although the error will be
larger than if e affected only zero reward
states, the error can be explicitly deter-
mined and it is guaranteed to have an upper
bound.

VII. EXAMPLE

Server

..

Incoming
Queries

Fig. 2.
example.

The configuration of the system used in the

To illustrate the concepts mentioned so
far we make use of a small system illus-
trated in Figure 2 comprising of a simple

\VolIP network of three SIP (Session Initia-
tion Protocol)[8] servers, 2 proxy servers,
of which one is a backup, and a connecting
network. When the main proxy server is
running it can route 40 calls per hour to
each server, however the backup server can
only route % as many. The proxy servers
fail on average once a week and take 2
hours to repair. A SIP server fails on aver-
age once a day but only takes 30 minutes
to repair. The network fails once every 1
hour on average due to congestion, how-
ever it only takes 10 minutes on average to
become decongested. The state descriptor
(m,n) indicates that the main proxy is
functioning as well as n servers.

In Figure 3 we depict a Markov chain
derived from Figure 2. On this Markov
chain we define the reward structure as
follows:

« If the main server is operational: 40 x
f£servers

« If the main server has failed but the
backup is operational: 30 x #servers

« Otherwise 0 rewards are earned

The addition of the reward structure then
completes the definition of a MRM.

0.42307

041712

mehain.mrm

Fig. 3. A Markov chain extracted from the system
description.

A. Observing the error magnitude

To observe the size of the error intro-
duced by the e-reward technique we used
Monte Carlo simulation on the CTMC il-
lustrated in Figure 3. Figure 4 illustrates
the growth of error over a 1000 simulations
with e replacing the reward in previously

zero reward states. Each simulation exited
after 1200 units had passed. The lower
and upper bounds of the error are clear in
the left hand graph with the size of the
error being a function of ¢ and the total
time spent in the zero reward states. In the
right hand side graph we have reduced the
rate at which we enter the failure state to
more ideal conditions of one failure every
3 months with a 6 hour repair time. The
accumulated error in this case is very small,
around 2.5 x 10~?, as the total time spent
in the zero reward state, and therefore the
magnitude of the error, is greatly reduced.

The straight line graphs in Figure 4
reflect the largest possible error € - ¢. If
there are cases where the total time in a
zero reward state becomes very large we
can expect the upper error bound to tend
towards this line. We note that in Figure
4 that although the largest possible error
grows at a rate greater than the upper bound
of the lower graph, it is orders of magnitude
smaller than the total accumulated reward
at that point in time, with the total accumu-
lated reward in the example used reaching
In cases where it is not possible to compute
the error due to the residence time in zero
reward states, we can easily calculate € - ¢
and guarantee that the error be less.

B. Numerical Complexity

The e-reward technique has, however, an
affect on the underlying numerical methods
used in model checking. For our research
we use the Erlangen-Twente Markov Chain
Checker (ETMCC)[3], a symbolic model
checker, which uses the Fox-Glynn[9]
method to compute the Poisson probabili-
ties of the underlying Markov chain. The
affect on the algorithm is such that the
greater the orders of magnitude between
the largest and smallest elements in the rate
matrix the longer the algorithm must run,
and more importantly, the more memory
is needed. Figure 5 shows the number of
iterations needed by the tool in order to
solve sample CRL queries performed on
the model described in Section VII-A. For
small e the number of iterations needed
begins to increase quite significantly once
€ is smaller than 0.0001.

In our example, when attempting to
make e smaller by another order of magni-

28

Largest possible error
Accumulated error

0 200 400 600 800 1000 1200 1400

Fig. 4. The growth of error after the introduction of
€. The top figure resides for a longer period of time
in ¢ states than the one on the bottom.

T
‘test.dat’

500000 |

0 L L L T
1e-06 1e-05 0.0001 0.001 0.01 01 1
Error

Fig. 5. The number of iterations required to solve a
Markov chain with e.

tude, we run into memory space problems.
Note however, that the execution time re-
mained reasonable, despite the increasing
number of iterations, and that memory was
the primary constraint. We performed the
verification on a 1.4Ghz AMD Athlon pro-
cessor with 256MB RAM.

VII. APPLYING CRL CONSTRAINTS

Once we have a MRM (comprising a
CTMC and associated reward structure) we
can apply constraints expressed in Contin-
uous Reward Logic to the MRM. We need
to ensure that the CRL expression models

as accurately as possible the constraints we
wish to impose.

In the case of service level agreements
we wish to know how much work will be
performed before the system has some sort
of failure (a failure being defined as when
no work is done, not just if the main server
fails). In Figure 3 a failure is indicated if
the state satisfies atomic proposition f. We
are not concerned with whether only the
main server has failed (indicated by a state
that satisfies b) but rather when both the
main and backup servers fail which occurs
when a state satisfies —(b vV m) which is
equivalent to the simpler statement = f. We
would like to test the fact that if we do fail
we will have transacted 250 SIP requests
and that there is a greater than 95% chance
that this happens. The CRL expression to
express this is

Peoos(~f | J £

250

which can be informally translated as
that there is a less than a 5% chance of
failure occurring before 250 requests have
been processed.

Another constraint that we might wish to
check is that of repair. Here we specify that
their should be a 98% chance that the main
server is repaired before 50 transactions are
processed by the backup server. The CRL
statement to do this would be expressed as

P<0.02(bU m)

50

If we are interested in testing the proba-
bility of a network failure happening from
a state when everything is fully functional
we would use the A operator to indicate the
extra constraint of the number of servers
available before failure. This would be ex-
pressed on the left hand side of the Until
operator as shown by the CRL statement

P<o.001((m A 3) U f)

If any of the above constraints are not
met, than the system designer has the op-
tion of either readjusting the paramaters
of the model to meet the requirements or
by weakening the requirements so that the
model is satisfied.

With this small model we are limited by
the number of atomic propositions avail-
able to us. In larger models with more
atomic propositions describing a number
of properties of the system the number of
constraints that can be applied increases
significantly.

IX. CONCLUSION

We have shown the usage of Markov
Reward Models through the modelling of
a simple system. It is clear that in order to
be able to extract useful results from the
model it is vital that an accurate, detailed
model of the system is needed. Both the
underlying structure of the Markov chain,
especially the failure and repair rates of
the system, and the reward structure need
to reflect the behavior of the system as
accurately as possible.

We have addressed the concern that re-
moving zero reward states from Markov
reward models can change the logical prop-
erty of the model. Doing so can cause
previously valid requirements to no longer
hold on the transformed model. By taking
into account the requirements before the
removal of zero reward states we can guar-
antee that the logical characteristics will
not be affected.

We introduced an alternate approach to
the elimination of zero reward states by
replacing zero awards with €, a suitably
small number. This removes the need for
the removal of zero state rewards, however
it does introduce a cumulative error which
we quantify via simulation.

REFERENCES

[1] B. Havekort, L. Cloth, H. Hermanns, J.-P. Ka-
toen, and C. Baier, “Model checking performabil-
ity properties,” Proceedings of the International
IEEE Conference on Dependable Systems and
Networks, pp. 103-112, 2002.

[2] C. Baier, J.-P. Katoen, and H. Hermanns,
“Approximate symbolic model checking of
continuous-time markov chains,” in Interna-
tional Conference on Concurrency Theory,
1999, pp. 146-161. [Online]. Available:
citeseer.nj.nec.com/baier99approximate.html

[3] H. Hermanns, J.-P. Katoen, J. Meyer-Keyser, and
M. Siegle, “A tool for model checking markov
chains,” Software Tools For Technology, 1999.

[4] C. Baier, B. R. Haverkort, H. Her-
manns, and J.-P. Katoen, “On the logical
characterisation of performability properties,”
Automata, Languages and Programming,
pp. 780-792, 2000. [Online]. Available:
citeseer.nj.nec.com/article/baier00logical.html

(5]

(6]

[71

(8]

(9]

“Service
Available:

IT Information Library,
management.” [Online].
http://www.itil.org/itil _e/itil_e_040.html
M. Beaudry, “Performance-related reliability
measures for computing systems,” |EEE Transac-
tions on Computers, vol. 27, pp. 540-547, June
1978.

G. Ciardo, R. Marie, B. Sericola, and
K. Trivedi.,, “Performability analysis using
semi-markov reward processes,” |EEE Trans-
actions on Computers, vol. 39, no. 10,
pp. 1251-1264, 1990. [Online]. Available:
citeseer.nj.nec.com/ciardo90performability.html
M. Handley, H. Schulzrinne, E. Schooler,
and J. Rosenberg, “SIP: Session initia-
tion protocol,” 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2543.txt

B. L. Fox and P. W. Glynn, “Computing pois-
son probabilities,” Communications of the ACM,
vol. 31, no. 4, pp. 440-445, 1988.

