
SOAPifying the Open Archives
Technical Report Number: CS03-13-00

October 2003

Michael Gaylord
Department of Computer Science

University of Cape Town
mgaylord@cs.uct.ac.za

Sergio Congia
Department of Computer Science

University of Cape Town
scongia@cs.uct.ac.za

Bhavik Merchant
Department of Computer Science

University of Cape Town
bmerchan@cs.uct.ac.za

ABSTRACT
This is a research paper on the partial development and
experiments related to a SOAP-compliant metadata harvesting
protocol based on the Open Archives Initiative’s Protocol for
Metadata Harvesting (OAI-PMH). The experiments involved
implementations of a client-side Service Provider and a server-
side Data Provider and were aimed at determining the feasibility
of encoding the OAI-PMH request/response pairs as SOAP
messages. In addition, a testing tool was developed to test the
protocol compliance of data providers. The results prove that such
a SOAP messaging system for the Open Archives is indeed
feasible as the additional overhead for such SOAP functionality
was insignificantly small. Furthermore, the changes necessary for
adopting such a framework are minimal.

1. INTRODUCTION
In recent years the global academic community has begun to rely
more and more on what are known as Digital Libraries (DL). A
DL is “an electronic information storage system focused on
meeting the information seeking needs of its users.” [7]
A DL contains metadata records which each describe a logical
unit of data that is contained within the library (e.g., a book). A
metadata record can essentially be described as “data about data”.
For example, metadata about a research paper could contain
information such as the author, title and year of publication.
A DL in the context of the OAI-PMH is known as a repository.
Gathering metadata from a repository is a process known as
metadata harvesting, performed by an application known as a
harvester. This harvesting is performed so that a client-side
program can provide some service to a user (e.g., search
facilities). The OAI-PMH is currently the standard for metadata
harvesting.
This project investigated the migration of the Open Archives
Initiatives Protocol for Metadata Harvesting (OAI-PMH) to a
parallel SOAP version. This is due to the recent acceptance of the
SOAP Messaging Framework [5] as a World Wide Web
Consortium (W3C) endorsed standard for distributed peer-to-peer
XML communication over the web.
Previously, no such message-passing standard existed that was
ideally suited to the dissemination of metadata. When the OAI
began work on the OAI-PMH v2.0 it was already known that the
SOAP messaging framework would become a standard in later
months. For this reason the OAI-PMH v2.0 was specifically
designed so that migration to a SOAP encoding would be possible
without changes to the protocol.

The reason for this parallel encoding is simply that of
interoperability. The major drive in the OAI’s mission is the
promotion of interoperability between Data Providers and Service
Providers (§ 2.1). A SOAP encoding of the protocol could
become a more widely used standard for metadata harvesting.
This would be an improvement over the current application
specific HTTP GET and POST encodings used for metadata
harvesting.
To investigate this aspect, development of specific harvesting
tools was needed to support a SOAP version of the OAI-PMH.
These tools included a repository, a harvesting tool and a tool to
test the compliance of such a repository against the protocol in
question. An overview of the message passing between the
various components developed can be seen in Figure 1.
SOAP has been implemented in the new encoding as a layer that
fits between HTTP and the actual protocol framework. This
enables most semantics and syntax of the OAI-PMH version 2.0
[6] to be retained unmodified.

Figure 1: Overview of components developed and their

interactions.

2. BACKGROUND & MOTIVATION
2.1 The Open Archives Initiative’s Protocol
for Metadata Harvesting (OAI-PMH)
Open Archives are information systems that share their data with
the outside world using a well-defined application layer Internet
protocol. This protocol, developed by the Open Archives
Initiative is called the Open Archives Initiative Protocol for

Metadata Harvesting and functions on top of the HTTP transport
protocol. The OAI-PMH provides an application-independent
interoperable framework based on metadata harvesting. This is a
relatively new standard and has been widely adopted by
document archives in the research, education and publishing
arenas.
The OAI protocol defines an interoperable framework with two
classes of participants:

• DATA PROVIDERS - These participants administer
systems that support the OAI protocol as a means of
exposing metadata about the content in their archives.

• SERVICE PROVIDERS - These participants issue OAI
protocol requests to the systems of data providers and
use the returned metadata as a basis for building value-
added services such as searching, browsing and rights
management.

In the OAI-PMH, requests are sent from the Service Provider via
a harvester - a Web robot that issues scheduled OAI-PMH
requests to the Data Provider. The requests are scheduled
regularly to keep the local collections of metadata current. The
Data Provider operates a repository that responds to the 6 request
types (verbs) defined by the OAI-PMH specification:

• GetRecord – used to get a single record from the
repository.

• Identify – used to obtain archive-level information about
the repository.

• ListIdentifiers – instructs the repository to return a list
of record identifiers according to values given in the
request.

• ListMetadataFormats – used to query a repository as to
the types of metadata formats it supports.

• ListRecords – request for a list of all the records
specified by the arguments accompanying it.

• ListSets – used to retrieve a list of the sets that the
repository supports.

2.2 The SOAP Messaging Framework
The SOAP Messaging Framework (SMF) was designed to
facilitate the transfer of structured information (XML) over a
range of communication protocols [5]. This enables the
deployment of standardised Web Service interfaces independent
of transport layer protocols.
The structure of a SOAP compliant messaging system comprises
a set of SOAP Producer and Consumer nodes. A node can be
defined as a body of programming logic that either relays or
processes a SOAP message [5].
As has already been described, the SMF is a specification for
using XML documents as messages [4]. The specification
contains:

• A model for exchanging SOAP messages.
• A set of rules for representing data within SOAP

messages, known as SOAP encoding.

• Guidelines for transporting SOAP messages over
HTTP.

2.2.1 The SOAP Message Structure
The SMF is designed to allow simplicity and extensibility. This is
facilitated by a fairly loosely defined structure for creating SOAP
messages independent of a programming model. The specification
defines an element called a SOAP Envelope used for data
encapsulation. This envelope contains further elements namely:

• A SOAP Header – Contains information for exchanging
messages in a decentralised manner. This header may
contain one or more a header blocks whose purpose is
to retain information applicable to intermediary nodes
along a specific message path.

• A SOAP Body – Provides a mechanism for transmitting
data. Child nodes in the Body should be namespace
qualified. This element essentially contains the payload
information of the message.

• A SOAP Fault – Used to deliver error information
within a SOAP message. The SMF defines semantics
for encoding such messages that contain details about
the fault such as fault code, reason, offending node, role
of offending node and details about the fault.

Figure 2 shows a SOAP message and its associated components.

Figure 2: Structure of a SOAP message

3. METHOD
3.1 Protocol Design
In version 2.0 of the OAI-PMH requests are expressed as HTTP
URL strings. The valid OAI-PMH URL string consists of the base
URL of the repository accompanied by a verb and its associated
arguments. Each keyword argument pair is separated by a ‘&’
delimiter. For example, a typical ListIdentifiers request sent to the
citebase archive with its from, until and metadataPrefix arguments
would be:
http://citebase.eprints.org/cgi-
bin/oai2?verb=ListIdentifiers&from=2003-01-
01&until=2003-01-01&metadataPrefix=oai_dc

The corresponding response to a request is in the form of an XML
UTF-8 encoded stream shown in Figure 3 below. (This is a
simplified version with namespace declarations and certain other
attributes omitted for simplicity)

Fault

Body

Header

Envelope

Figure 3: A sample Listidentifiers request

3.1.1 Request Schema
This first step in migrating to a SOAP version was to develop a
schema for OAI requests, thus moving from a HTTP POST/GET
paradigm to sending an XML encoded request. To avoid
redefining types that were already provided in the response
schema [3], these types are imported from the OAI-PMH response
schema using the import capability of XML schemas.
The request schema1 defines syntax and semantics of each request
verb and is a direct mapping from version 2.0 of the OAI-PMH
specification. The corresponding verb arguments, their sequence
and types are clearly defined in this schema. Below is an example
of the same request found in the earlier example:

Figure 4: A sample ListIdentifiers request

3.1.2 SOAP Encoding
The next step was to embed the newly developed OAI-PMH
requests and OAI-PMH responses into a SOAP message. As
explained in the previous section a SOAP message contains a
body element used to encapsulate payload information. This is the
embedding location of OAI-PMH requests and responses.
Therefore this process essentially involved making the root
element of the request or response, depending on which is to be
sent, the first child elements of the SOAP body. Figure 5 and
Figure 6 are examples of the same request/response pair as the
previous examples encoded as SOAP messages.

1 The schema can be found at

http://simba.cs.uct.ac.za:8180/OAI/SOAP/OAI-PMH-REQ.xsd

Figure 5: A sample SOAP-encoded OAI-PMH request

Figure 6: A sample SOAP-encoded OAI-PMH response

3.2 Implementation
3.2.1 SOAP Data Provider – The Repository
A repository, as has already been discussed, is essentially a
database server containing a collection of metadata items. Built
on top of the database is a message processing system that
controls the dissemination of the metadata.
The implementation of this repository involved four distinct
layers. Two were dedicated to the processing of OAI-PMH
requests and responses, one involved the backend database while
the fourth was used to process SOAP elements.
The repository was implemented in Java and used JDBC to
connect to a MySQL database containing a sample collection of
electronic theses and dissertations. The Web interface used Java
Servlets on Apache Tomcat.
The repository essentially functions in the following manner:

1. The server receives a SOAP message.
2. The SOAP tags are removed from the message and the

OAI-PMH request arguments are extracted and
processed.

<?xml version="1.0" encoding="UTF-8"?>
<OAI-PMH>
 <responseDate>2003-09-
30T09:43:58Z</responseDate>
 <request metadataPrefix="oai_dc"
verb="ListIdentifiers" until="2003-01-01"
from="2003-01-
01">http://citebase.eprints.org/cgi-
bin/oai2</request>
 <ListIdentifiers>
 <header>
 <identifier>oai:cogprints:2672</identifier>
 <datestamp>2003-01-01</datestamp>
 </header>
 <header>
 <identifier>oai:cogprints:2673</identifier>
 <datestamp>2003-01-01</datestamp>
 </header>
 </ListIdentifiers>
</OAI-PMH>

<?xml version="1.0" encoding="UTF-8"?>
<OAI-PMH-REQ>
 <ListIdentifiers>
 <from>2003-01-01</from>
 <until>2003-01-01</until>
 <metadataPrefix>oai_dc</metadataPrefix>
 </ListIdentifiers>
</OAI-PMH-REQ>

<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
 < Body>
 <OAI-PMH-REQ>
 <ListIdentifiers>
 <from>2003-01-01</from>
 <until>2003-01-01</until>
 <metadataPrefix>oai_dc</metadataPrefix>
 </ListIdentifiers>
 </OAI-PMH-REQ>
 </Body>
</Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
 <Body>
 <OAI-PMH>
<responseDate>2003-09-
30T09:43:58Z</responseDate>
<request metadataPrefix="oai_dc"
verb="ListIdentifiers" until="2003-01-01"
from="2003-01-
01">http://citebase.eprints.org/cgi-
bin/oai2</request>
 <ListIdentifiers>
 <header>

<identifier>oai:cogprints:2672</identifier>
 <datestamp>2003-01-01</datestamp>
 </header>
 <header>

<identifier>oai:cogprints:2673</identifier>
 <datestamp>2003-01-01</datestamp>
 </header>
 </ListIdentifiers>
 </OAI-PMH>
 </Body>
</Envelope>

3. The system then makes calls to the database to retrieve
the requested information and constructs an OAI-PMH
Version 2.0 compliant response.

4. SOAP tags are then attached to the response and it is
transmitted to the requesting harvester.

XML is processed in the software with the aid of Apache Xerces
– a DOM Level-3 compliant XML parser.
The repository implements the following features:

• OAI-PMH Version 2.0 compliance and the SOAP-OAI-
PMH prototype protocol.

• Flow control by way of resumption tokens.

• Selective harvesting using sets.

• Three metadataFormats, namely: oai_dc, marcxml and
etdms.

• SOAP processing components are supported as an
individual layer.

• Is platform independent and has been tested on both
BSD and Microsoft operating systems.

• Uses Apache Xerces to parse and construct XML
messages.

3.2.2 SOAP Service Provider – The Harvester
As defined in the OAI-PMH framework, a service provider is an
entity which employs the harvesting protocol to obtain metadata
from data providers (or metadata repositories). The service
provider uses harvested metadata to build value-added services
such as searching, browsing, rights management and e-print
preservation above the metadata.
The service provider was developed to provide a searching
service that allows a user to perform data recollection on
harvested metadata. The logic behind this is that the metadata
ultimately contains a link to the actual resource it describes. By
allowing a user to search metadata, he/she can browse relevant
records in an attempt to find the desired resource.
The necessary constituents identified for developing such a
service provider were: a harvester – responsible for implementing
the harvesting protocol in both HTTP and SOAP forms; a Data
Provider Administration tool – used to administer data providers;
and a Search engine for information retrieval.
In an attempt to make the system portable, the decision was made
to develop the service provider entirely in Java due to the
platform independence of Java. Further, to enable the system to
be independent of a Database Management System (DBMS), the
decision was made to use Lucene (a full featured text-based
search engine developed in Java) for storage and indexing of
records. Harvested metadata is normalised into a list of records
obtained from a data provider by way of a ListRecords request.
These records are subsequently added to a Lucene search index
which can be queried using a search query.
The service allows users to perform boolean searches2 in both
simple and advanced modes. In a simple search, multiple fields of

2 A Boolean search uses boolean comparisons between words to

identify relevant records.

a record are compared and relevant records are displayed in a
legible format, while advanced searches are more specific.

3.2.3 Testing Tool
The tool was developed in Java and consisted of a Swing driven
GUI. The tool was built in order to test a repository’s
conformance to the OAI-PMHv2.0 and to the new SOAP
encoding of the protocol. The tool was built using standard APIs
for Java and is thus easily extensible and platform-independent.
The Testing Tool performs the following major tasks:

• Submits valid individual OAI-PMH requests to the
repository (i.e., one of the six request verbs)

o Informs the user as to what arguments are required
for each verb

o Allows the user to manually modify the parameters
of the request

o Checks user input for errors

• Allows users to select a number of test requests to be
run in sequence as a batch

o Automatically creates and submits requests that are
engineered to generate the specific OAI errors
chosen by the user

• Displays the responses from the repository as:
o Raw XML
o XML formatted to be more human-readable

• Performs validation and error checking, namely:
o Checks that XML responses are well formed
o Validates XML responses using online schema
o Handles any OAI errors gracefully
o Handles HTTP errors gracefully
o Handles unexpected errors gracefully (e.g., I/O

errors)

• Displays error messages:
o Individually in the case of single tests
o Within results tables and log files in the case of batch

tests

• Displays the results of batch tests. Namely, for each
individual request/response pair from the batch the tool:

o Shows information about the test case – which verb
was sent with the request and what kind of error was
expected

o Shows the result of the test – pass, fail or skipped (if
a test is not applicable)

o Displays the actual request sent or response received
o Gives the user a reason as to why a test failed

• Gives feedback to the user as to what task the tool is
currently performing and its approximate percentage of
completion

3.3 Evaluation Procedure
The ultimate objective of this project was to develop a prototype
protocol that implements the OAI-PMH under a SOAP messaging
paradigm. The experimental components implementing this
derived protocol were therefore tested together to demonstrate
successful functionality. This can be described as complete
system integration testing. Integration testing of the complete
system was performed by implementing the three experimental
components (namely the Data Provider, Service Provider and
testing tool) in their full SOAP context and assessing their
interoperability.
Another issue to consider was the relative performance of the
SOAP-OAI-PMH to the OAI-PMH. This was done to investigate
the comparative efficiency between the two protocols. For these
tests, message sizes for both requests and responses were
compared as well as their respective transfer times.
The final form of testing, protocol conformance testing, was done
to ensure that the components of the system proved to support the
prototype protocol correctly. To ensure this, independent testing
was performed on these components. Two methods of verification
were used to test the functions of these components. Since the
SOAP-OAI-PMH is a direct mapping of the OAI-PMH, all OAI-
PMH related functionality is exactly the same apart from the fact
that there is layer responsible for the processing of SOAP related
information. The components were thus adapted to support the
OAI-PMH version 2.0 and their interoperability was tested with
existing OAI-PMH implementations.
The second method of testing protocol conformance of the
experimental components involved testing their SOAP
functionality. To do this, output of the programs was captured and
validated against the SOAP-OAI-PMH schema that was
developed (§ 3.1.1). Output was printed to a file and was
subsequently analysed using a schema validation tool. This
ensured that all information passed between the components
conformed to the schema and thus conformed to the protocol.

4. RESULTS
4.1 Results
4.1.1 Complete System Integration Testing
The system functioned as a whole successfully. This means that:

• The service provider was able to selectively harvest all
the metadata from the data provider successfully.

• The data provider could service all six possible
requests.

• The Testing Tool was able to perform batch tests on the
data provider.

4.1.2 Performance Evaluation3
Performance evaluation was done with the aid of three specific
tests. These tests include:

3 These tests were performed using the data provider software

module only. A separate set of testing programs was used to
issue requests and assess the sizes and transfer times.

• The difference in number of bytes between a regular
OAI-PMH version 2.0 request/response pair and a
SOAP-OAI-PMH request/response pair.

• The difference in transfer times between a regular OAI-
PMH version 2.0 request/response pair and a SOAP-
OAI-PMH request/response pair.

• The difference in transfer times to harvest the entire
contents of the repository using regular OAI-PMH
requests and the SOAP-OAI-PMH.

Evaluation of the message sizes for a specific request, namely a
ListRecords request with from, until, metadataPrefix and set
arguments, yielded the results found in Table 1.

Table 1: Difference in bytes for a response

Request Type
Request
(Bytes) Response(Bytes)

SOAP 645 167037
HTTP 140 166616
Diff 505 421

The resulting transfer times for the same pair of requests are
found in Table 2.

Table 2: Average processing and transfer times for a request

Protocol Version Processing time (ms)
SOAP 1609.22
HTTP 1594.87
Diff 14.4

The transfer times for harvesting the entire contents of the
metadata repository are contained in Table 3 below. This test was
performed on a standalone machine using a “dummy” harvesting
program. The repository database contained metadata describing
72 376 electronic theses and dissertations.

Table 3: Transfer times for an entire harvest including the
average transfer time per request.4

HTTP

Version
SOAP

Version Diff
Total Time (ms) 872759 1033584 160825
Avg Time (ms) 361.6 428.3 66.7

4.1.3 Protocol Conformance Testing
The OAI-PMH V2.0 versions of the experimental components
were exhaustively tested against other existing OAI-PMH
implementations and no problems were encountered. In fact errors
were found in existing implementations of OAI-PMHv2.0
repositories.
All the output of these components was captured and found valid
against the SOAP-OAI-PMH schema.

4 Number of requests exercised to harvest the entire database =

2413.

The SOAP Messaging Framework specifies that any XML data
contained within the payload of the SOAP envelope must be
qualified. Since the SOAP envelope is also qualified the entire
message can be validated using schema. Using this approach the
testing tool was successfully used to check if the SOAP messages
generated by the repository were valid. It was also used to
perform batch tests on the repository to ensure that all OAI errors
were catered for and indeed they were.

4.2 Discussion of Results
The results for the evaluation of the prototype protocol
implementations infer the following:
The proof that the system functioned as a whole successfully
meant that the prototype protocol functioned as intended without
any unexpected errors. This not only means that the project was a
success but also proves that such a “SOAPified” version is a
feasible replacement for the OAI-PMH V2.0.
Evaluating the performance of the protocol showed that there
were insignificantly small differences for fulfilling SOAP
requests as opposed to HTTP requests. The overhead of using the
SOAP-OAI-PMH was miniscule (14 ms for a single request and
2.6 minutes to harvest the entire collection of records in the
repository). This additional overhead can be attributed to the extra
processing required to function with a larger, XML-based request.
The overhead in message sizes resulted from the SOAP
encapsulation tags and was also deemed insignificant5.
Since the experimental implementations of the SOAP-OAI-PMH
components conformed to the protocol (i.e. all possible requests
that each component can produce have been validated), it can be
deduced that these components implemented the protocol
correctly. Thus any testing between these components can be
assumed to have tested the protocol in its entirety.

5. IMPLICATIONS
5.1 The Open Archives Initiative
The SOAP encoding of the protocol was shown to implement all
the requirements of the OAI-PMHv2.0 correctly. The fact that the
only additional overhead required to implement this new
encoding is to encapsulate requests and responses into SOAP
envelopes makes it a viable alternative. This encapsulation is
intuitive and requires only a marginal amount of additional
processing overhead. The OAI is setting up a Working Group to
develop a SOAP encoding of the OAI-PMH and it is hoped that
the findings of this project help to bring to light issues that need to
be addressed during this development.
The results obtained by the members of this project imply that the
OAI-PMHv2.0 could indeed be successfully migrated to a new or
parallel harvesting protocol.

5.2 SOAP as a Lightweight Messaging
Protocol
There has been increased use of SOAP for message passing in the
context of Web Services. The successful migration of the OAI-
PMHv2.0 to SOAP with very little overhead implies that the

5 Less than 56 milliseconds difference with a transfer rate of 8

kilobytes a second (450 / 8000).

design goals of SOAP were successful. It has been shown that
SOAP truly is a lightweight messaging protocol.

6. FUTURE WORK
Although the project was considered successful there are some
issues that need to be addressed. A summary is presented below.

• The SOAP specification states that a SOAP “Fault”
element must be returned for any error that occurs
during message passing. The implementations
developed during the life of this project only deal with
SOAP faults if the SOAP part of the message is
erroneous. Proper conformance to the SOAP
specification would mean that SOAP Faults must be
returned even for OAI errors.

• The experimental protocol does not deal with SOAP
message compression, intermediary nodes and SOAP
header blocks.

• Should a standard SOAP encoding be developed the
OAI-PMH could be used for metadata dissemination
more publicly by allowing Data Providers to publish
WSDL information in a UDDI registry. This, however,
also depends on WSDL and UDDI being made
standards.

7. CONCLUSION
In conclusion, the prototype protocol that was developed for this
project and the subsequent experimental implementations of the
system that supported it proved that the SOAP Messaging
Framework could be considered a viable addition to the OAI-
PMH.
After evaluating the performance of the protocol, it has been
demonstrated that the overhead introduced for the processing of
SOAP messages was insignificantly small and therefore infers
that the efficiency of the OAI-PMH version 2.0 protocol was not
hampered by the introduction of SOAP elements.
Some investigation still needs to be made into the other features
that the SOAP Messaging Framework provides to fully conclude
that the experimental protocol that was developed is an alternative
to the OAI-PMH version 2.0 protocol.

8. ACKNOWLEDGMENTS
Our thanks to Dr. Hussein Suleman for his much valued guidance
as our supervisor for this project

9. REFERENCES
[1] W3C Press Release. World Wide Web Consortium Issues

SOAP Version 1.2 as a W3C Recommendation. June 2003.
[Web Page] Available: http://www.w3.org/2003/06/soap12-
pressrelease

[2] Participating Organisations: Ariba, Inc., Commerce One,
Inc., Compaq Computer Corporation, DevelopMentor,
Inc., Hewlett Packard Company, International
Business Machines Corporation, IONA Technologies,
Lotus Development Corporation, Microsoft
Corporation, SAP AG, UserLand Software, Inc., SOAP

Submission Request to W3C [Web Page] Available:
http://www.w3.org/Submission/2000/05/

[3] Van de Sompel H., XML Schema for validating OAI-PMH
v2.0 responses, May 2002. [Online] Available:
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd

[4] Dix C., SOAP Services, extract from the book by
Cauldwell P., Chawla R., Chopra V., Damschen, G.,
Dix C., Hong T., Norton, F., Ogbuji, U., Olander G.,
Richman M.A., Saunders K., and Zaev Z.,
Professional XML Web Services Wrox Press Limited
September 2001, ISBN 1861005091 [Web Page]
Available:
http://www.vbxml.com/soap/articles/soapservices/defa
ult.asp

[5] Gudgin M., Hadley M., Mendelsohn N., Moreau J-J.,
Nielsen H.F., SOAP Version 1.2 Part 1: Messaging

Framwork W3C Recommendation 24 June 2003 [Web
Page] Avaliable at: http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/

[6] Lagoze C. Van de Sompel H., The Open Archives
Initiative Protocol for Metadata Harvesting, Protocol
Version 2.0 June 2002 [Web Page] Available:
http://www.openarchives.org/OAI/openarchivesprotoc
ol.html

[7] Suleman H., Open Digital Libraries, PhD Dissertation,
Virginia Tech, November 2002. [Online] Available:
http://scholar.lib.vt.edu/theses/available/etd-11222002-
155624/unrestricted/odl.pdf

