
Large-Scale Structure in the Universe
Technical Report CS03-16-00

Department of Computer Science
University of Cape Town

Carl Hultquist, Sameshan Perumal, Patrick Marais and Tony Fairall

Abstract

Cosmologists are currently researching the theory of
large-scale structures, which are in essence groups of
neighbouring galaxies. Recent “galaxy-hunts” have re-
sulted in data for hundreds of thousands of galaxies be-
ing made publicly available, and it has become infeasi-
ble to isolate large-scale structures by hand from this
data. Furthermore, it is difficult for cosmologists to vi-
sualise such structures by simply observing the galaxies
that comprise the structure; they need a graphically ren-
dered system in which they can change their viewpoint
and observe the structure from any position desired.

We present a system identifies large-scale structures
from datasets of galaxy information, and then displays
the data using OpenGL in such a way that the user can
“fly” through space in realtime, observing not only a
single structure but the entire dataset and how struc-
tures are positioned relative to each other.

1 Introduction

A new theory is being developed by cosmologists that
is hoped to provide an explanation about how the uni-
verse has developed and how it will continue to develop.
This involves what are known as large-scale structures,
which are simply sets of neighbouring galaxies that have
an impact on each other1. Cosmologists are interested
in the topology of these structures, and in the overall
topology that these structures impose on the universe2.

Until recently, there has been very little data on galaxies
that allows cosmologists to accurately determine clus-
ters; and the data that has been available has been suf-
ficiently small to allow for structures to be identified by
hand. However, massive “galaxy hunts” in the past few
years have culminated this year3 to produce vast galaxy
databases. Most notably the Sloan Digitial Sky Survey

1Typically by means of gravitational forces
2That is, the overall pattern — or lack thereof — inherent in

large-scale structures
32003

[Kron et al. 2003] and 2dF Redshift Survey [Peterson
et al. 2001] contain information pertaining to approxi-
mately 133988 and 102235 galaxies respectively.

These large datasets are cumbersome to process by
hand, and a means of easily identifying and visualis-
ing large-scale structures using a computer is desirable.
We propose such a system, which identifies large-scale
structures from sets of galaxy data and allows the user
to “fly” through the space, visualising the structures
from any viewpoint. Furthermore, we make use of a
novel and cheap method of achieving depth perception,
allowing objects to appear at different distances from
the user for a more realistic interaction.

2 Background

The work required to produce such a system falls into
two major categories, namely structure identification
and rendering and user interface. As such, we consider
related and background work in two distinct sections.

2.1 Structure identification

This section of the work serves as the data source for the
user interface, and is responsible for processing galactic
data in order to identify large-scale structures and gen-
erate visualisations of these in 3D. These visualisations
are intended to assist astronomers in investigations into
large-scale structures formed by galaxies - the work of
[Humphreys and Bruce 1989] suggests that such visual-
isations aid understanding.

The crux of this section revolves around the technique
of sphere percolation around galaxies to identify struc-
tures within galactic data. A large-scale structure can
be identified using the technique presented in [Fairall
1997]: for each galaxy in the dataset, expand a sphere
around its position. Expand the radius of all spheres un-
til some maximum value is reached, or intersection with
another sphere occurs. Each set of intersecting spheres
then forms a structure, as indicated in Figure 1. A



Figure 1: Graphical illustration of sphere percolation
for structure identification.

problem with most galactic datasets is that data den-
sity decreases with distance from Earth. This is due
to the interference caused by closer galaxies, which ob-
scure those further out. A refinement to this scheme
allows the percolation radius (maximal sphere radius)
for a given galaxy to be individually set in order to
compensate for this. This detection algorithm is vastly
simplified through the use of a Minimum Spanning Tree
(MST) - in that case, only edges originating from a given
galaxy need be considered to determine membership of
neighbours in a structure.

A convex hull is an efficient, fast way to generate a sur-
face that encloses a volumetric data set, such as that
created by large-scale structure identification. A convex
hull of a set of points S in 2D is formally defined as the
intersection of all convex sets containing S [M. de Berg
and Schwarzkopf 2000] [Day 1990]. Intuitively, it may
be thought of as wrapping a rubber band around the
point set - this idea is conveyed in Figure 2. Extrap-
olating this idea into 3D produces polygonal surfaces
that contain all points in a volume. Although fast and
efficient, a weak point of this technique is that is unable
to correctly handle cavities or concave surfaces. Hence,
the G in Fig. 2 looks like an ellipsoid.

Figure 2: A 2-dimensional convex hull of a set of points

A much better solution uses a volume specific surface ex-
traction technique like Marching Cubes [Lorensen and
Cline 1987]. It is specialised for volumetric data, and is
able to handle concavities. However, it is computation-
ally expensive, and as such may not always be appro-
priate. One other problem is that point data must be

converted to volumetric data in some form to achieve
this. Many methods exist to do this, but an interest-
ing solution uses Constructive Solid Geometry (CSG)
[Requicha 1980] to obtain a solid object that provides
this volume information. CSG uses simple objects to-
gether with the boolean difference(−), intersection(∩)
and union(∪) operators to define complex solid objects.
In the case of this work, a typical CSG result would be
similar to Figure 1.

2.2 Rendering and user interface

The rendering portion of our system is reponsible for
rasterising galaxies and large-scale structures in an ef-
ficient manner. As such, considerations such as LOD
(level-of-detail), billboarding and user-defined hardware
programs needed to be addressed. A system that pro-
vides a similar tool showing visualisations of galax-
ies and other celestial phenomena is Partiview [Amer-
ican Museum of Natural History 2003a], provided by
the Hayden Planetarium [American Museum of Natu-
ral History 2003b]. To our knowledge, Partiview does
not, however, identify and display large-scale structures.

LOD methods provide an effective means of increasing
efficiency by simply rendering objects with less detail
as they move further away from the viewer. In this
way, less geometry is sent to the hardware for objects
that contribute less to the overall view, without actu-
ally sacrificing detail4. An example of various levels of
detail can be seen in Figure 3. This is an extensively
well researched topic, and details of various approaches
can be found in [Clark 1976], [Funkhouser and Séquin
1993], [Hoppe 1996], [Garland and Heckbert 1997] and
[Southern and Gain 2002].

Figure 3: An example of varying LOD in a model. The
figure on the left shows a simplified form of the model
on the right.

Billboarding [McReynolds et al. 1999] is a useful method

4Due to the object being further away, it is rendered with fewer
pixels and hence can be represented using fewer polygons to give
the same detail that is visible



of realistically rendering an object using a single, tex-
tured polygon. The process simply calls for the polygon
to be oriented in such a way so that it directly faces
the viewer (see Figure 4). Such a technique is useful in
providing a realistic rendering of galaxies.

camera

up

right

final normal vector

cylindrical normal vector

Figure 4: An illustration of the billboarding process.
The polygon representing the object is simply rotated
so that it faces the viewer.

Recent graphics hardware5 allows for user-specified pro-
grams to be run efficiently on the hardware. This
provides a means to dynamically adjust either vertex
data (before rasterisation) or resulting pixel colours (af-
ter rasterisation). Such techniques can often be used
to bypass certain features of the standard graphics
pipeline that are not utilised by an application, or to
develop more complex changes that can be executed
more quickly on the graphics hardware than on the
CPU. With OpenGL, such enhancements are available
through extensions, of which there are several that are
particularly useful and worth considering for use6.

Triangle strips are yet another means for increasing
rendering efficiency. These are natively supported by
OpenGL, and can have a maximum improvement of 67%
(N +2 vertices sent to graphics hardware as opposed to
3N).7 Generating good triangle strips is an ongoing
area of research, and some methods can be found in
[Evans et al. 1996], [El-Sana et al. 1999] and [Stewart
2001].

In addition to efficient rendering, we have also consid-
ered the problem of an effective user interface. In par-
ticular, defining an intuitive interface for the user to
“fly” through space is difficult. Many modern three-
dimensional graphical interfaces have a notion of grav-
ity with associated meanings for “up” and “down”, and
often the interface exploits this fact. In space, however,
there is no such grounding, and so these interfaces are
not suitable. [Shoemake 1992] and [Chen et al. 1988] de-
scribe some popular techniques for interfaces that use a
mouse.

Finally, we have explored means for conveying depth in-

5For example, nVIDIA’s GeForce3 and better
6Namely ARB multitexture, ARB vertex program,

ARB vertex buffer object and NV register combiners
7Where N is the number of triangles in the mesh being ren-

dered

formation to the user, allowing them to see in “true 3D”
and perceive the distance of objects from the viewpoint.
[Steenblik 1987] describes how a method called chro-
mastereoscopy can be used to sacrifice colour for depth
information. [Cruz-Neira et al. 1993] describe another
method using polarised shutter glasses that are synchro-
nised with the display unit so as to display a different
image to each eye.

3 Approach

The system that we have designed provides an efficient
and dynamic solution, both in terms of structure iden-
tification, rendering and user-interface.

An important part of indentifying structures is standar-
dising astronomical coordinates, which use velocity to
indicate position. Additionally, the creation of an MST
significantly simplifies the task of identifying structures.
Since galactic data is for all intents static, the above two
aspects have been addressed using offline pre-processing
for a given dataset, in the form of a cross-platform
wxWindows GUI application [Smart et al. n. d.]. For
the creation of the MST, Prim’s algorithm [Prim 1957]
was chosen due to the maximally dense nature of our
graph (every galaxy is potentially connected to every
other galaxy). Kruskal’s algorithm [Kruskal 1956] was
innappropriate since all N(N − 1) edges have to com-
puted, sorted and stored, which is infeasible for large
datasets. Prim’s allows computation of edges on de-
mand, without requiring storage.

The Marching Cubes technique mentioned previously
was not used, since it is inappropriate to the data we are
working with. After investigations, it proved infeasible
to manually code the algorithm, and most other imple-
mentations expect data in the form of volumetric slices,
such as those obtained from medical imaging. Various
alternative solutions were then investigated, including
voxel representations and a custom surface fitting tech-
nique.

The choice to use the Visualisation ToolKit [VTK 2003]
to achieve a similar effect stems from the maturity, sta-
bility and appropriateness of the code available. Ad-
ditionally, VTK provides built-in support for CSG to
create the volumetric data used by the Contouring fil-
ter, which creates a surface around volumetric data.One
shortcoming of VTK is that it is intended as a complete
solution, from data source to rendering, and as such
provides no mechanism whereby data can be directly
extracted by an external application - specific code had
to be written to address this problem.

With regards to structure visualisation, three methods



have been implemented. They address the issues of
speed and accuracy by attempting to achieve a balance.
The first is very fast, but lacks adequate detail for use-
ful investigation by end users. The last is significantly
slower, but provides very detailed results, that are much
more useful in investigations. These options are:

• Wire-tree visualisation of structure MST:
This basically entails providing a means to render
the edges and vertices of the structures local MST,
using lines and points. This method has numerous
advantages: it is incredibly quick to create; it pro-
vides a good overall view of the form of the struc-
ture; it is implicitly supported by the existence of
the local structure MST. This visualisation is not
suitable for investigations into the forms of struc-
tures since it does not convey any volume informa-
tion, and in particular, is unable to reproduce the
cavities and doughnut-like shapes that are possible
using the sphere percolation technique.

• Convex-Hull: This visualisation represents a
middle ground between the above technique and
Contouring. Essentially, it should be possible to
wrap a 3D convex hull around the points in the
structure to capture some sense of the volume and
extent of it. This technique still suffers from being
unable to handle concavities or holes in the gener-
ated solid. It is good for quickly locating identified
structures to verify positional and approximate vol-
umetric requirements of the user.

• Contouring: Uses the vtkContour filter, to pro-
duce a surface around the structure that respects
concavities and holes in the solid. This visualisa-
tion suffers from slow execution time, and as such
could violate the interactivity requirement. How-
ever, the added detail gained is invaluable, hence
its inclusion. A further advantage is that the sam-
pling detail can be adjusted, allowing for simple,
quick approximations to be generated. The qual-
ity of the visualisation can subsequently be refined
to produce complicated, detailed structures. This
flexibility greatly increases the interactivity level
(at low detail) without diminishing the effective-
ness and accuracy of the results (at high detail).

The Contouring approach is volume based, and as such
is an O(n3) algorithm8, hence there is a large delay as-
sociated with execution of the Contour Filter with high
qulaity settings. A mechanism was therefore added to
allow structures and their visualisations to be saved,
thereby reducing most computation to a single, inten-
sive run which need not be subsequently repeated.

8n here refers to the grid density, which can be altered depen-
dent on requirements

The user interface allows for a variety of rendering tech-
niques to be used, allowing the user to tune settings ac-
cording to their individual system setup. The following
rendering options are supported:

• Various methods for rendering galaxies.
Galaxies can be rendered as either points (using
GL POINTS) or as billboards, or not at all. In the
case of billboards, a selection of images of galaxies
have been chosen to randomly texture the galaxies.

• Support for ARB vertex buffer object exten-
sion. This allows vertex data to be stored in the
memory of the graphics hardware, resulting in sig-
nificant speedups when actually rendering.

• Support for ARB vertex program extension.
This is used in conjunction with billboarding, and
allows the computation of billboard rotations to
be performed as a vertex program on the graph-
ics hardware.

• Discrete LOD of large-scale structures. As
the viewer approaches large-scale structures, the
detail with which the structures are rendered in-
creases9. Conversely, as the viewer moves away
from a structure, it becomes “smaller”10 and hence
requires fewer polygons to achieve the same detail.
We have implemented this using a preset number
of discrete LOD’s, and the LOD to use is decided
based on the viewer’s distance from the centroid of
the structure.

• Per-pixel shading of large-scale structures.
Anomalies with the standard OpenGL Gouraud
shading were noted, whereby placing a diffuse light
near the centroid of a polygon would result in the
polyon being poorly lit (whereas, in fact, the inte-
rior — near the centroid — should have been well
lit). This is simply a result of the use of Gouraud
shading. To overcome this — and hence provide
more realistic results — we implemented a simple
per-pixel diffuse lighting scheme that makes use of
the NV register combiners extension.

• Chromastereoscopy. For further realism, we
have implemented chromastereoscopy support for
both galaxies and large-scale structures. This al-
lows a pair of inexpensive glasses to be used which
adjust the focal length of varying colours of light,
making reds appear close, greens further away, and
blues the furthest away. Thus the user can obtain a
real sense of distance with regard to the placement
of galaxies and structures relative to their viewing
position.

9That is, the number of polygons used to draw the structure
is increased

10In terms of the screen-space that it takes up



“Flying” has been implemented using a new system
(see Figure 5), whereby three vectors are necessary to
uniquely determine the user’s position and view. Firstly,
a displacement vector P is used to define the user’s po-
sition in space11. A viewing vector, V , then defines the
direction in which the user is looking and finally an up
vector, U , defines the direction currently corresponding
to “up” for the user12.

Camera

V
U

P

Origin

Figure 5: Our approach to motion calculations. Three
vectors (P , V and U) are used to encode the user’s
position and viewing direction. P maintains their po-
sition relative to the origin, V stores the direction in
which they are viewing the scene, and U stores the vec-
tor that is currently the user’s sense of “up” (i.e. deter-
mines rotation about the V vector).

User interactions and their effects on P , V and U are
then defined as follows:

• Look “up” and “down”. V and U are adjusted
by rotating them about V × U . P remains un-
changed. This is effected by moving the mouse for-
wards (up) and backwards (down).

• Look left and right. V is adjusted by rotating
it about U . P and U remain unchanged. This is
effected by moving the mouse left and right.

• Move forwards and backwards. P is adjusted
by “sliding” it along the vector V . That is, Pnew =
P + αV . V and U remain unchanged. This is
effected by holding down the left (forwards) and
right (backwards) mouse buttons.

• Strafe left and right. P is adjusted by “sliding”
it along the vector V × U . That is, Pnew = P +
α(V × U). V and U remain unchanged. This is
effected by pressing the left and right arrow keys
on the keyboard.

11Relative to the origin
12That is, in screen co-ordinates U points towards the top of

the screen

Furthermore, we have developed a cross-platform user
interface using wxWindows [Smart et al. n. d.] and
OpenGL [Silicon Graphics Inc. 1995]. This allows for an
interface native to the platform on which the application
is run to be used, enhancing the overall usability of the
application.

4 Results

From the perspective of Structure Identification and Vi-
sualisation, the results are very encouraging. Expert
users, represented by Dr. T. Fairall of the Astronomy
department of UCT, defined the following as important
goals that our system has achieved:

• Correctly identifying standard, recognised struc-
tures (eg. Virgo, Coma and Fornax clusters)

• Illustrating the “finger of god” effect apparent in
most clusters.

• Conveying the “foamy” texture created by large-
scale structures.

Coordinate transformations are working correctly - ver-
ified against accepted values, as well by visual compar-
ison of resultant datasets to the actual night sky. The
time taken to identify structures is acceptable, since on
average approximately 10 comparisons must be made
for each galaxy, which reduces the computational ex-
pense from O(n2) to O(n). The most striking feature of
identification is that most of our local large-scale struc-
tures (cz < 7500 km/s) which are identified correspond
to previously established structures, as determined by
astronomers.

The results of the visualisation of these structures is
mixed, though still promising. The wire-tree repre-
sentation, although simple, is very effective at convey-
ing the overall form of a given structure. Additionally,
there is almost no computational cost (edges are simply
extracted from the global MST to form the local MST).

The Convex Hull representation is less effective -
sphere like objects, with very little distinguising fea-
tures seem to be characteristic of all visualisations of
these types. This form is effective at quickly locating
structures (much more visible than the wire-tree rep-
resentation) and it does succeed in providing a good
estimate of the total volume of the structure. This is
important in altering the percolation radius to ensure
that relevant galaxies are not omitted and irrelevant
ones are excluded. Since convex hull generation is fairly
quick, the use of this representation to fine-tune perco-
lation parameters is an effective technique.



The Contour Filter and CSG combined representation
proved to be very effective. The ability to selectively
alter the level-of-detail13 of the generated surface al-
lows compromises between speed and accuracy to be
made. The use of variably sized spheres, dependent on
the distance to the furthest neighbour, greatly increases
the quality of the visualisation, and is able to capture
the sponge- or thread-like quality of large-scale struc-
tures. Additionally, the preservation of cavities allows
empty areas of space within a structure to be easily de-
termined.

Rendering efficiency is good, with a “typical” setup be-
ing able to run at approximately 30 FPS14 on fairly
common hardware15. Here, typical denotes the render-
ing of both large-scale structures and galaxies. Table 1
shows some configurations with more detailed results.
High quality configurations, which render the best qual-
ity and most realistic results16 run at a more moderate
10 to 12 FPS. All preparation optimisations — discrete
LOD’s, vertex programs, chromastereoscopy lookup ta-
bles, and hardware buffers — are generated extremely
quickly, with the slowest being LOD generation at ap-
proximately 0.3 seconds per structure (for 15 levels of
detail).

Furthermore, all rendering optimisations and structure
identification settings can be modified dynamically by
the user, allowing for performance to be adjusted ac-
cording to the user’s unique setup.

Finally, our new interface for motion in space compares
favourably to other techniques. Feedback from one ex-
pert user was particularly positive, with the comment
that our interface is preferred to that offered by [Amer-
ican Museum of Natural History 2003a].

Figures 6 and 7 show screenshots of the resulting appli-
cation with structures and galaxies.

5 Conclusion

In conclusion, we have achieved all of our goals by de-
veloping a system that:

1. Efficiently and correctly identifies large-scale struc-
tures.

13This a facility provided by VTK, and determines the granu-
larity of the mesh on which the volume data is sampled.

14Frames per second
15Pentium 4 2GHz, GeForce 2 MX440, 512Mb RAM. Whilst

512Mb of RAM is fairly high, we do not believe that lower
amounts will pose an issue. The average memory footprint of
our system is approximately 30 to 40 Mb.

16Namely, using billboards for galaxies and chromastereoscopy
for depth perception

Configuration FPS Verts/s Tris/s
Galaxies rendered
as points, LOD
optimisations
for structures,
OpenGL lighting,
no chromastere-
oscopy

29.91 2241067 395859

Galaxies rendered
as points, LOD
optimisations
for structures,
OpenGL lighting,
with chromastere-
oscopy

25.01 1873925 331007

Galaxies rendered
as billboards, no
structures rendered

24.99 3521538 1760769

Galaxies not ren-
dered, structures
rendered with no
LOD optimisations
and with OpenGL
lighting

9.37 2372064 790688

Table 1: Some overall results of specific configurations
tested. In particular, these results demonstrate that our
use of chromastereoscopy does not have a large impact
on rendering efficiency, and also that LOD optimisa-
tions cause a significant boost in rendering efficiency.
changes.

2. Allows for quality of the resulting structures to be
controlled by the user.

3. Efficiently renders galaxies and large-scale struc-
tures.

4. Allows the user to “fly” through space to obtain
whatever view they desire.

5. Allows for rendering settings to be cutomised to
suit the user’s requirements.

Our results also show that the system is both usable
and efficient enough to operate on a common hardware
setup. In particular, our numerical results in Table 1
show that the system runs suitably well on a mod-
est hardware specification, and also that certain opti-
misations (such as discrete LOD usage) have a very
favourable impact on performance. Coupled with the
fact that rendering settings are customisable, our im-
plementation is dynamic and can be adapted to work
at high speed for the hardware that it is run on. This



Figure 6: A screenshot showing structures with triangle
wireframes, a billboarded galaxy, and a dialog for library
settings.

concept is further supported in our structure identifi-
cation process by allowing the user to alter the quality
and algorithm used to identify structures (as mentioned
in Section 4), offering a completely customisable system
that the user can adjust to suit their requirements.

In addition, we have developed a novel interface for the
user to navigate around the universe, and have added
chromastereoscopy which allows for a more realistic ex-
perience by providing depth information to the user.

6 Future work

There are still a number of features that could be ex-
tended in this project. We have identified the following
key extensions:

• User-defined dataset modification. Our cur-
rent system generates a datafile as a pre-process
to generate data necessary for structure identifi-
cation. Whilst the user can use this technique to
generate their own datafiles, this is separate from
our main solution and also does not cater for inter-
active changes.

• Enhanced rendering. Our most recent imple-
mentation does not display a large-scale structure
when the user is inside it. This is both for ren-
dering efficiency purposes and to allow the user
to still see all the data outside of this structure.
One means of improving this would be to make the
structure which the user is inside slightly transpar-
ent, allowing them to perceive both the structure

Figure 7: A screenshot of an underlying minimum span-
ning tree representation of a large-scale structure, with
a dialog for adjusting rendering settings.

and the data outside of it. Continuous LOD, with
a structure such as a progressive mesh, would also
be beneficial to overall appearance and would avoid
“popping” of structures as the user approaches or
moves away from them.

• More efficient rendering. For example, the use
of efficient triangle strips, culling of entire struc-
tures (that lie behind the user), and the incorpora-
tion of newer graphics hardware features.

• True 3D. Whilst chromastereoscopy provides a
cheap and easy means of providing depth informa-
tion, one has to sacrifice colour in the process. In-
corporating some other means of 3D (such as the
use of stereoscopic pairs or a shutter-glass system)
would allow for a more realistic experience.

• Improved galaxy rendering. Since our solution
was developed specifically for the study of large-
scale structures, little attention was given to the
rendering of galaxies. Consequently, our galaxies
are not completely realistic and, in particular, the
small range of textures used can cause galaxies to
appear the same. A more realistic means of ren-
dering galaxies — that actually takes the galaxy’s
real look into account, say — could produce a more
compelling visualisation.

References

American Museum of Natural History, 2003.
Partiview. http://haydenplanetarium.org.



American Museum of Natural His-
tory, 2003. The Hayden Planetarium.
http://www.haydenplanetarium.org.

Chen, M., Mountford, S. J., and Sellen, A. 1988.
A study in interactive 3-d rotation using 2-d con-
trol devices. In Proceedings of the 15th annual con-
ference on Computer graphics and interactive tech-
niques, ACM Press, 121–129.

Clark, J. H. 1976. Hierarchical geometric models for
visible-surface algorithms. In Proceedings of the 3rd
annual conference on Computer graphics and interac-
tive techniques, ACM Press, 267–267.

Cruz-Neira, C., Sandin, D. J., and DeFanti,
T. A. 1993. Surround-screen projection-based vir-
tual reality: the design and implementation of the
cave. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, ACM
Press, 135–142.

Day, A. M. 1990. The implementation of an algorithm
to find the convex hull of a set of three-dimensional
points. ACM Transactions on Graphics (TOG) 9, 1,
105–132.

El-Sana, J., Azanli, E., and Varshney, A., 1999.
Skip Strips: Maintaining Triangle Strips for View-
dependent Rendering. IEEE Visualisation ’99.

Evans, F., Skiena, S. S., and Varshney, A. 1996.
Optimizing triangle strips for fast rendering. In IEEE
Visualization ’96, R. Yagel and G. M. Nielson, Eds.,
319–326.

Fairall, A. 1997. Large-Scale Structures in the Uni-
verse. No. ISBN 0-471-96252-X. Wiley-Praxis.

Funkhouser, T. A., and Séquin, C. H. 1993. Adap-
tive display algorithm for interactive frame rates dur-
ing visualization of complex virtual environments.
Computer Graphics 27, Annual Conference Series,
247–254.

Garland, M., and Heckbert, P. S. 1997. Surface
simplification using quadric error metrics. Computer
Graphics 31, Annual Conference Series, 209–216.

Hoppe, H. 1996. Progressive meshes. Computer Graph-
ics 30, Annual Conference Series, 99–108.

Humphreys, G. W., and Bruce, V., 1989. Visual
cognition: Computational, experimental, and neu-
ropsychological perspectives. Lawrence Erlbaum As-
sociates, Hove.

Kron, R., et al., 2003. Sloan Digital Sky Survey.
http://www.sdss.org.

Kruskal, J. B. 1956. On the shortest spanning sub-
tree of a graph and the traveling salesman problem.
In Proceedings of the American Mathematical Society,
vol. 7, 48–50.

Lorensen, W. E., and Cline, H. E. 1987. March-
ing cubes: A high resolution 3d surface construction
algorithm. In Proceedings of the 14th annual con-
ference on Computer graphics and interactive tech-
niques, ACM Press, 163–169.

M. de Berg, M. van Kreveld, M. O., and
Schwarzkopf, O. 2000. Computational Geometry:
Algorithms and Applications. No. ISBN: 3-540-65620-
0. Springer-Verlag.

McReynolds, T., Blythe, D., Grantham, B., and
Nelson, S. 1999. SIGGRAPH ’99 Advanced Graph-
ics Programming Techniques Using OpenGL (course
notes).

Peterson, B., et al., 2001.
The 2dF Galaxy Redshift Survey.
http://www.mso.anu.edu.au/2dFGRS/Public.

Prim, R. C. 1957. Shortest connection networks and
some generalizations. In Bell System Technical Jour-
nal, vol. 36, 1389–1401.

Requicha, A. G. 1980. Representations for rigid
solids: Theory, methods, and systems. ACM Com-
puting Surveys (CSUR) 12, 4, 437–464.

Shoemake, K. 1992. Arcball: A user interface for spec-
ifying three-dimensional orientation using a mouse. In
Proceedings of Graphics Interface ’92, 151–156.

Silicon Graphics Inc., 1995. OpenGL - High Perfor-
mance 2D/3D Graphics. http://www.opengl.org.

Smart, J., et al. wxWindows Home.
http://www.wxwindows.org.

Southern, R., and Gain, J. 2002. Creation and
Control of Real-time Continuous Level of Detail on
Programmable Graphics Hardware. The Eurographic
Association and Blackwell Publishers.

Steenblik, R. 1987. The Chromastereoscopic Process:
a Novel Single Image Stereoscopic Process. In Pro-
ceedings of SPIE: True 3D Imaging Techniques and
Display Technologies.

Stewart, A. J. 2001. Tunneling for triangle strips in
continuous level-of-detail meshes. In Proceedings of
Graphics Interface, B. Watson and J. W. Buchanan,
Eds., 91–100.

VTK, 2003. The visualisation toolkit.
http://www.vtk.org.


