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Abstract

Using a modelling package such as Alias Maya or SoftImage XSi
to create a natural scene is too tedious to be practical. Procedu-
ral generation techniques reduce the amount of work involved, but
there may still be too many parameters to be selected manually. We
propose a new method of generating natural scenes, using a genetic
algorithm (GA) to infer the user’s preferences from user feedback.
In order to allow the goal to be reached in a reasonable time, the
GA must converge quickly. The scene generation and display pre-
processing must also be efficient. We present techniques that attain
these goals while still producing reasonable quality output and in-
teractive frame-rates. We also compare this approach to having a
user manually select parameters.

1 Introduction

Traditionally, virtual environments have been modelled by hand,
using 3D modelling packages such as Maya. More recently, pro-
cedural methods have been used to remove much of the manual
labour by automatically generating complex scenes. Nevertheless,
creating a procedural scene depends on tuning many, possibly hun-
dreds, of parameters. Performing this tuning is difficult and time-
consuming, especially as some parameters may not obviously cor-
respond to a physical aspect of the environment.

We propose using artificial intelligence to guide the selection of
parameters. The fitness of scenes will be determined by the user,
rather than an automated fitness function. We have created a system
for generating virtual forest scenes. These scenes contain trees,
terrain, clouds and sky. It is divided into three primary subsystems:

1. Artificial intelligence

2. Scene generator

3. Renderer
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Figure 1: System design. The boxes represent components of the
system while arrows represent information flows.
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These subsystems are related as shown in figure 1.
Section 2 surveys previous work in each of these fields. Section

3 explains our overall design, while sections 4–6 describe the three
components above. Finally we present results and conclusions.

2 Background

Using user feedback to guide a search has been fairly successful in
operations research [Anderson et al. 1999; Scott et al. 2002]. When
used to control evolution in an artificial life system, the technique
is known asinteractive evolution. Sims [1991] pioneered the ap-
plication of interactive evolution in the field of computer graphics.
He uses the technique to produce abstract images (by evolving Lisp
expressions) and plant models (by evolving parameter vectors).

Rowland and Biocca [2000] use genetic algorithms to produce
sculptures (described by parameter vectors). Rather than a user
providing fitness values, the user directly selects individuals to be
mated or mutated.

Previous work has generally focused on evolving single objects,
such as plants or sculptures. In contrast, our system produces entire
scenes, with multiple elements (trees, ground, sky and clouds). This
poses new challenges, as the system must be efficient enough to
handle the complexity.

2.1 Genetic algorithms

Searching through a problem domain for an optimal solution is a
common problem in modern scientific and business arenas. Doing
so by hand is needlessly inefficient, and with human error built into
the equation the probability of correctly finding an optimal solution
is very low.

Computational methods are possible for simpler problems (the
class P of polynomial problems, for example), and more complex
computational solutions to the simple NP problems are also possi-
ble.

In the case of NP-complete problems, however, no polynomial-
time algorithms are known. In this case, computational searches
must be used in order to search a parameter space. Many different
approaches to this exist:

2.1.1 Random search

By randomly generating solutions one has the possibility of run-
ning into an optimal solution by chance, however unlikely. This
approach gives no guarantee that such a solution will be found, and
with a large enough parameter space, the likelihood of such a solu-
tion being found in a reasonable amount of time becomes vanish-
ingly small.

2.1.2 Biased random search

An improvement to the random search algorithm is to bias the re-
sults towards an area of the parameter space more likely to hold



the intended solution. If one knew that a specific portion of a bit-
string should always hold specific values, for example, one could
lock these bit values, thereby biasing the search results.

2.1.3 Exhaustive search

In an exhaustive search, as the name suggests, all possible com-
binations of bit values are exhaustively tested. This guarantees a
perfect solution, and in fact it is the only approach to parameter
space searching which does. However, the number of possible so-
lutions which are tested is 2x, wherex is the number of bits. With a
parameter space of 20 bits and with a testing time of half a second
per solution, it would require 6 days to test all possible solutions,
while another algorithm would be likely to find an acceptable (i.e.
about 95% acceptance) solution within a much shorter time. This
approach is only used either when the parameter space is small,
when massive computational resources are available, or when per-
fection is required. However, these three are seldom the case.

2.1.4 Genetic Algorithms

A different possible approach is to employ genetic selection
[Wright 1991]. Genetic operators (similar to those that occur in
combining the genes of parents to produce the genetic identity of a
child) can be used on these genes (as if they were normal biological
genes) to create new potential solutions in the problem domain. In
this way, instead of iteratively trying better bit-strings in some kind
of mathematical fashion, discarding valuable information contained
in each generated combination, the information held within better
genes is kept, and thus a more logical search is performed. This al-
lows for faster and more efficient searching of the problem domain
for better solutions. An optimal solution is not guaranteed, how-
ever, as only by using an exhaustive search can this be confirmed.
Genetic selection is more commonly used, however, because of the
radically reduced computation time.

Two major parameters can be adjusted in order to affect changes
to the way that Genetic Algorithms operate. A crossover parame-
ter specifies how genes are combined, allowing a greater or lesser
amount of “mixing” of the genetic data. A mutation parameter
specifies how many bits in each gene produces are spontaneously
mutated (i.e. their bit value is flipped), allowing the algorithm to
explore the parameter space thoroughly.

Many different approaches to genetic selection exist, and each
has its merits and downfalls. Conventional approaches use tech-
niques taken directly from genetic science, and obtain new genes
by combining older genes which were closest to the required so-
lution. In this way information is retained in the genes which are
currently in the “gene pool”. However, much information is still
discarded with each generation of the algorithm.

Newer (and more efficient) approaches maintain an internal state
which is used to produce new genes, and genes which are close to
the required solution are used to update this internal data in some
fashion.

2.1.5 PBIL/ACO

Baluja and Caruana suggested replacing the standard genetic ap-
proach to GAs with more mathematical models [Baluja and Caru-
ana 1995]. The Population Based Incremental Learning algorithm
[Baluja 1994] and the Ant Colony Optimisation algorithm [Dorigo
and Di Caro 1999] are both newer approaches to Genetic Searches,
and are essentially the same in terms of their operation, so we shall
only outline the operation of the PBIL algorithm.

The PBIL algorithm keeps an internal structure known as a prob-
ability vector (PV). Essentially, it is a vector (of the same length as
the genes being generated) of values between 0 and 1. The closer
a value is to 1, the more likely a 1 is to appear in that bit position,

and similarly for 0. The initial values of this vector are usually set
to 0.5.

PBIL operates as follows :

1. Genes are generated based on the current state of the PV. This
is done by generating random numbers between 0 and 1, and
applying thresholds of the current PV values in order to gen-
erate a sequence of 0s and 1s.

2. Genes are rated as for a conventional GA. Generally, a rating
of 0 to 10 is used, although more complex methods of feed-
back can also be used.

3. The PV is updated according to the information held within
the genes of the current generation. This is done by taking
a weighted sum of the current PV values with the values of
what we call an “updating vector”. The exact weightings are
determined by the convergence rate.

4. Mutation occurs on the PV. This is either done by shifting
the PV values a small distance towards 0.5, or by taking a
weighted average of the current PV values and random val-
ues between 0 and 1. The weightings are determined by the
mutation rate.

5. If an optimal solution has been found, then terminate, other-
wise return to step 1. Other implementations run for a specific
number of generations, rather than for an unspecified amount
of time.

As for conventional GAs, two major parameters exist: conver-
gence rate, and mutation rate. Convergence rate dictates to what
extent genes in each generation are allowed to affect the values in
the PV. Convergence rates that are too high allow for possible de-
struction of valuable information held within the PV. Convergence
rates that are too low, while making the process of finding an opti-
mal solution slower, do not really destroy any valuable information,
and thus lower values are usually recommended. Mutation rate dic-
tates how much mutation is allowed to occur on the PV in each
generation. The effect of this parameter is the same as the effect of
the mutation operator in a conventional GA.

2.2 Procedural generation

Computers are perfect for repetitive and tedious tasks.
Algorithms exist for producing complex images and objects that

would be near to impossible for a human to create manually. Ex-
amples of complex objects and images include fire, trees, wood
and marble textures and mountains. Researchers such as Ebert,
Musgrave and Perlin have discovered and invented several tech-
niques such as Multifractals and Perlin Noise for producing some of
these natural phenomena [1994]. Lindenmayer and Prusinkiewicz
[1990] invented a formal system called Lindenmayer Systems (or
L-Systems) for generating flora.

2.2.1 Fractals

Nature often exhibits self-similarity. For example, the leaves of a
fern looks like a miniature version of the entire plant. Another ex-
ample is a ocean wave breaking upon the shore. The wave appears
to have little miniature waves and in those waves there are even
smaller waves.

Mandelbrot inventedfractals [Ebert et al. 1994] which are a
mathematical technique used to produce self-similar objects such
as coastlines. Fractals have infinite detail which implies that one
may zoom into a fractal without reduction of detail.

Fractals have been used to generate mountains and even some
plants [Prusinkiewicz and Lindenmayer 1990].



2.2.2 L-Systems

With reference to the previous section, many plants exhibit self-
similarity. This implies that a plant can be generated according
to a set of rules or a formal system. Such a system is called a
Lindenmayer-System (or L-System) [Prusinkiewicz and Linden-
mayer 1990]. They comprise a formal grammar, an axiom and an
alphabet just like any other formal language. The difference be-
tween L-Systems and formal grammars such as context-sensitive
and context-free grammars is that, instead of the input string (or ax-
iom) being processed from left to right, they are processed in paral-
lel and therefore are calledparallel rewriting systems. As a result, a
context-free L-System is more powerful than any context-sensitive
grammar.

L-Systems are used to generate natural objects such as trees and
plants as well as artificial structures such as road networks and
buildings [Parish and M̈uller 2001].

2.2.3 Noise functions

Nature is full of randomness. However, this randomness is not the
same as other randomness; for example, the output produced by
Pseudo-Random Number Generators (PRNGs) is not smooth but a
series of discrete points instead. Therefore, a function that takes the
output of a PRNG and produces a smoothed random sequence in-
stead is necessary. One such function is the Perlin Noise generator
[Ebert et al. 1994]. It uses several types of interpolation to pro-
duce a random sequence of numbers suitable for generating natural
scenes on a computer. Noise generators are different from frac-
tals in that they are differentiable where as the latter is not. This
is important if the goal is to replicate rolling hills and valleys in a
computer-generated natural scene.

An improvement to the Perlin Noise generator is fractal Brow-
nian motion (fBm), which is simply a weighted sum of the output
from individual Perlin Noise generators. The benefit of using fBm
is that it produces localised effects, whereas Perlin Noise produces
that same randomness globally. A real life example is a plateau
with relief features.

2.3 Rendering

Despite the rapid advances in graphics hardware in the last ten
years, a highly detailed forest scene places a heavy demand on the
rendering system. When four of these must be displayed simulta-
neously, the frame rate would be unacceptable without some opti-
misation. A high-level way to optimise rendering is to only render
objects with the amount of detail required, depending on the dis-
tance from the viewer. This approach is known as “level of detail”.
This is a large area of research; Garland [1999] provides a summary
of the various approaches.

A fairly successful approach to automatically creating the vari-
ous representations is the progressive mesh [Hoppe 1996]. A pro-
gressive mesh simplifies a complex mesh by applying a sequence
of edge collapses. An edge collapse replaces two vertices with one,
and destroys two faces (see figure 2). Different implementations
of progressive meshes differ in the way they choose which edges
to collapse, the order to collapse them and where to place the new
vertex. If the choices are good, then the resulting meshes will have
roughly the same appearance as the original but with many fewer
vertices and faces.

There is a range of ways to make the choices that trade off pro-
cessing time against mesh quality. The original progressive mesh
paper [Hoppe 1996] performs an expensive non-linear optimisation
to get very good results. Garland and Heckbert [1997] provide a
simpler scheme using quadric functions. Associated with each ver-
texV is a quadric functionQV . The value ofQV(p) (wherep is a
position in space) estimates the sum of the squares of the distances

of p from each face incident onV. If an edge joiningV1 andV2
is collapsed to a new vertex at positionp, then the cost associated
with this collapse isQV1

(p) + QV2
(p). Finding an optimal place-

ment for p givenV1 andV2 requires solving a linear system. This
quadric scheme does not take into account attributes such as texture.
Garland and Heckbert [1998] propose an extension of the scheme
that treats position and attributes as part of ann-element vector, and
applies the same technique inn dimensions. Hoppe [1999] further
extends this scheme to account for infinitely sharp creases. Other
schemes include [Lindstrom and Turk 2000; Fei and Wu 1999; Gar-
land and Shaffer 2002; Lindstrom and Turk 1998].

Figure 2: The edge collapse operation for a progressive mesh

Applying the level-of-detail concept to terrain has slightly dif-
ferent requirements. In a walk-through of a virtual environment,
there will always be some parts of the terrain that are very close to
the camera, and hence must be rendered at the highest level of de-
tail. However, areas that are further away may be rendered at lower
detail. The display of several levels of detail within a single mesh
is known as selective or view-dependent refinement. This is more
complicated than rendering a mesh at a single level of detail, since
one must preserve geometric continuity across levels of detail to
prevent from cracks appearing [Lindstrom et al. 1996]. However,
terrain has the advantage of having very simple topology and con-
nectivity, and there are numerous algorithms that take advantage
of this [Lindstrom et al. 1996; Duchaineau et al. 1997; Vlietinck
2003].

2.3.1 Continuous level of detail

Lindstrom et al [1996] define several continuity properties in a LOD
scheme that are desirable (the names are our own):

Temporal continuity: The rendered geometry should be a contin-
uous function of time as the viewpoint changes. Alternatively,
the rendered geometry should be a continuous function of the
position and direction of the viewpoint. Temporal continuity
is usually achieved by morphing between discrete levels of
detail.

Geometric continuity: If a LOD scheme renders different parts
of a continuous model at different levels of detail, the ren-
dered geometry should nevertheless be continuous (as other-
wise cracks will appear).

Polygon continuity: For a sufficiently small change in viewpoint,
at most one polygon should be added or removed from any
given region.

We considered geometric continuity to be absolutely required, as
cracks in a mesh are very unsightly. Polygon continuity was not
considered, but in practice the algorithms used will change only a
few polygons for a sufficiently small change in viewpoint. We use
“continuous level of detail” to refer to temporal continuity. Lack
of temporal continuity is seen as “popping” — pieces of geometry
suddenly appearing or disappearing from one frame to the next.

3 Our approach

For generality, we use a bit vector to encode genetic information.
Other work has sometimes used more structured genes (cf. [Sims



1991; Rowland and Biocca 2000]), but such structures are usually
very specific to some problem domain. Since the genes are used to
control a range of different things (trees, clouds etc), a bit vector is
a more flexible approach.

Our user interface displays four candidate scenes, and asks the
user to select the best one. This is used to update the state of the
AI, which then produces four more scenes to be evaluated. This
is approach is similar to that of Rowland and Biocca [2000], in
that the user selects a best candidate rather than supplying explicit
fitness values to all the candidates. However, we are not using a
classical genetic algorithm (see section 4), so this candidate is not
simply used for mutation.

We have found that selecting a single “best” candidate is diffi-
cult, as one must weigh up different elements of the scene. It also
hampers the AI; for example, if the best scene has the wrong type
of trees but is otherwise very good, the AI will use the genetic ma-
terial controlling trees even though it is poor. To solve this problem,
we ask the user to select the best candidate in each of three areas:
trees, terrain and sky (see figure 5). The genes controlling each of
these areas undergo parallel but entirely separate evolution.

4 Genetic Algorithms

The Genetic Algorithm employed in this system is Population
Based Incremental Learning (PBIL). As such, convergence to an
optimal solution occurs much faster than with a conventional Ge-
netic Algorithm.

Initially, the algorithm treated the bit-strings it dealt with as
“black boxes”, not giving any regard to any internal structure of
the genes on which it operated. This was so that emphasis could be
placed on the internal structure of the PBIL algorithm implemented
in the system.

However, once this internal structure was optimised as much
as possible, regard was finally given to the structure of the genes
used. The scene generation software utilised specific bit positions
to specify specific parameters which defined the make-up of gener-
ated scenes, and as such treating portions of the genes as separate
entities allowed the PBIL algorithm to better converge towards a
solution.

4.1 Bit locking

The initial attempt to speed up the operation of the GA consisted of
locking specific portions of the Probability Vector (i.e. trees, terrain
or sky) in order to allow the user to concentrate on specific areas of
the scene.

Tests with this new method of searching through the parameter
space to find an intended solution provided some acceleration of the
process, and also some new problems.

A user that used this system tends to concentrate only on a spe-
cific aspect of the system (e.g. trees, sky, or terrain), and ignores the
other aspects of the scene. When they locked part of the Probabil-
ity Vector, and progressed to another part of the scene, the other bit
positions did not start from their initialised position of 0.5. Instead,
they had already moved from that position due to the algorithm’s
natural progression from its starting point, and had performed a
partial accidental convergence.

An obvious solution to this problem is to lock all bits that are
not intended to move (e.g. if working on trees, lock sky and ter-
rain bits), and lock and unlock bits as needed. This overcomes the
problem of accidental convergence, and allows for the bit-locking
algorithm to perform as it was intended.

4.2 Simultaneous scene aspect evaluation

In the algorithm described above, the bits that are locked are a
wasted opportunity. Instead of working on only one aspect of a
scene at a time, it is possible to work on all aspects simultaneously.

The algorithm until this point in the development of the system
consisted of feedback which led to one of the four scenes produced
being used as a vector to update the Probability Vector, and any
information contained in the other three scenes was wasted.

The solution to this wastage was to allow the user to label one
of the four scenes as the best in the categories of terrain, trees and
sky. From this feedback the GA constructed its own feedback vec-
tor based on the portions of the scene vectors corresponding to the
specific aspects of a scene.

This effectively allowed for a simultaneous evaluation and con-
vergence in the three major aspects of the scenes, providing a three
to one advantage in speed over the bit-locking algorithm.

5 Scene generation

5.1 Tree Generation

5.1.1 The L-System for generating the skeleton of the
tree

Trees generation involved the use of a parametric context-free L-
Grammar based on the grammar described in [Prusinkiewicz and
Lindenmayer 1990, pp 55-57]. The aforementioned grammar pro-
duced trees that were too flat in appearance. The grammar was
modified to produce trees that were more natural in appearance.

5.1.2 The generation of the tree mesh

Using the L-System mentioned in 5.1.1, the mesh for the tree was
generated using polygonal cylinders. The cylinders were tapered
to mimic branches on real life trees. To make the join between
branches smoother, the end of the cylinder connecting with the end
of another cylinder was conical, rather than flat.

The use of cylinders with conical ends still does not produce a
smooth, continuous join between the tree limbs. Several approaches
for producing smooth joins were investigated, such as Constructive
Solid Geometry (CSG), meta-objects (otherwise known as Blobby
objects) [Bloomenthal 2003] and the method described in [Bloo-
menthal 1985]. It was decided to make use of meta-objects to create
the tree mesh for the following reasons:

• The other approaches were not general enough to apply to any
type of tree.

• Meta Objects were easier to implement than the other ap-
proaches, given the time constraints.

• A 2-manifold mesh is quite easily produced by meta-objects
when the Marching Cubes algorithm is used. This is advan-
tageous (although not required) for level of detail algorithms
(see Section 6.2) and subdivision surfaces.

The resulting string from the L-System is used to build the skele-
ton of the tree using Turtle commands [Prusinkiewicz and Linden-
mayer 1990, pp 6-8]. The meta-tubes are then aligned with the
starting points and the direction with each of the limb axes of the
tree skeleton. Next, a 3D regular grid (or lattice) is placed over the
meta-tube assembly which comprises the tree. We loop though all
the points in the lattice, calculating the sum of all the field strengths
of each meta-tube. The lattice, now with an associated scalar value
for each point, becomes a scalar field. Finally, we need to produce
the triangle mesh of the tree using this scalar field. We do this is by
using the Marching Cubes Algorithm [Lorensen and Cline 1987].



The overall process of generating a tree is illustrated in Figure 3
and a close-up screenshot of a smooth join can be seen in Figure 9.
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Figure 3: A flow-chart depicting the process in which a tree is gen-
erated and rendered.

5.2 Terrain

As mentioned in Section 6.1, the terrain is represented as a height-
field. The height values are the output from a 2D dimensional frac-
tal Brownian motion noise generator.

5.3 Clouds

The clouds were implemented as two very large square polygons
(quads), each with a cloud texture map. The cloud texture map was
generated in a very similar manner to the height-field values for the
terrain but interpreted as cloud density rather than terrain height.
However, this is not enough as the result is a plasma-like effect. In
order to obtain the blotch-like effect that real cloudy skies have, the
texture map needs to be filtered [Elias n. d.].

6 Rendering

Efficient rendering of a complex forest scene is clearly required for
the system to be usable. However, scenes are generated on the fly
and so any preprocessing must be kept to a minimum. Our render-
ing system aims to balance these requirements, producing interac-
tive frame rates with a minimum of preprocessing. Our goal is to
be able to render four scenes simultaneously with a minimum of 15
frames per second, and to be able to preprocess each scene within a
few seconds.

We also experimented with both continuous- and non-continuous
level of detail schemes. We used hardware with a programmable
vertex engine to accelerate morphing between levels of detail (see
[Lindholm et al. 2001] for a low-level explanation of the pro-
grammable vertex engine).

6.1 Terrain

The terrain is implemented as a regular heightfield. We imple-
mented an algorithm similar to that of Vlietinck [2003]. This algo-
rithm is designed specifically for programmable vertex hardware,
such as is found in the GeForce 3 [Lindholm et al. 2001]. It uses
regular triangulations, but morphs between coarse triangulations in

(a)

(b)

Figure 4: Interpolations used by Vlietinck’s algorithm

the distance and fine triangulations close up. Figure 4 shows the
interpolations performed by this algorithm.

Every point in the terrain has an associated level of detail, de-
termined as a logarithmic function of the depth. Integer level of
detail numbers (LOD numbers) correspond to uniform tilings, such
as those in the left and right of figure 4. Non-integer LOD numbers
correspond to geometric interpolations between the adjacent uni-
form tilings. The vertex program used by the algorithm is able to
render a block of terrain whose LOD numbers lie betweeni−1 and
i +1, for some integeri. The algorithm operates recursively, start-
ing with the entire terrain itself. The recursive procedure operates
as follows:

1. If the current block lies entirely outside the view frustum, do
nothing and return.

2. Find a bound on the range of LOD numbers in the current
block. This is done using a bounding box for the block. If the
range does not fit into an interval[i−1, i +1] for some integer
i, then split the block into four sub-blocks and render these
recursively.

3. Otherwise, render the current block using the vertex program.

We modify the algorithm to skip step 1 for blocks over a certain
size. This allows a larger portion of the terrain to be visibility
culled. The results can be seen in figure 8. Note the increased
detail close to the lower left corner, where the camera in located.

For comparison, we also implemented an algorithm based on
Real-time Optimally Adapting Meshes (ROAM) [Duchaineau et al.
1997]. This algorithm does not depend on specific hardware fea-
tures, but does not lend itself to continuous level of detail. We found
that the vertex program algorithm significantly out-performed the
ROAM-based algorithm, with similar quality results. Our imple-
mentation uses the vertex program algorithm when hardware sup-
port is available, and falls back to ROAM otherwise.

6.2 Trees

Trees are implemented as general meshes, and level-of-detail is pro-
vided with progressive meshes. The simplification metric used by
Hoppe [1996] is designed for off-line preprocessing and hence is
too slow for our purposes. Fei and Wu [1999] achieve very fast
simplification by considering only edge length and local curva-
ture. However, in our own experiments with metrics based on edge
length we found that trees would lose volume very quickly. In-
stead, we use the error metric of Garland and Heckbert [Garland
and Heckbert 1997] to generate the mesh. We further improve the
efficiency by constraining collapsed points to lie on the line joining



the original points. This was found to make very little difference in
the model quality, and actually reduced texture sliding.

We follow Hoppe [1996] in using a small subset of the progres-
sive mesh sequence and geomorphing between them. Specifically,
we use a set in which each mesh has half the number of vertices
of the previous mesh. The interpolation is performed using a hard-
ware vertex program. This approach is similar to that of Southern
and Gain [2003], but is not constrained by their batched hierarchy.

Hoppe [1996] does not address the problem of selecting a level
of detail based on distance. We found that significantly better re-
sults could be achieved by basing the decision on the error metric
itself. Each mesh is assigned a cost, which is the cost of the most
expensive edge collapse used to create it. From this we can compute
an ideal distance for the tree, of the formD = αEβ . α determines
the trade-off between speed and quality, andβ is chosen to make
the equation scale-invariant (for example, ifE is a volume mea-
sure thenβ = 1

3). The actual distance is used to determine a linear
interpolation between the meshes whose ideal distances bound the
actual distance.

6.3 Sky

The background of the sky is implemented simply as a textured box.
We also considered using a tessellated dome, with colours assigned
to the vertices. This would allow the sky to be easy modified, but
this is not something we had a need for. We rejected this approach
as it had no advantages for our application, and would be been more
complex to implement.

Using a textured box for the sky allows other features to be
“painted on”. Clouds could have been implemented this way, but
this would have posed difficulties for the scene generator (paint-
ing across seams, for example). Instead, clouds are painted onto
horizontal rectangles that are placed inside the sky box. They are
implemented as billboards (i.e. with a transparency channel) so that
the sky and higher clouds will show through gaps.

7 Results

We tested our system with ten users by asking them to produce
five specific scenes. We also implemented an interface that allowed
parameters to be selected manually (using sliders), and gave users
the same tasks. To avoid a learning bias, some users used the AI
interface first while others used the manual interface first. Users
were asked to indicate which interface they preferred and to rate
each interface for how close it came to producing the target scenes.
For each combination of scene and interface, they were also asked
to rate the difficulty.

The summarised results are shown in table 1. The difference
figures are the difference between the ratings given to the manual
and AI interfaces (AI−manual). “Task average” is the average
difficulty of the five tasks, as rated by the user. “Closeness” is the
users’ ratings of how close they got to what they wanted. Raw
ratings are on a scale of 1 to 5, so the difference ratings range from
−4 to 4. The preference field is 1 if the AI approach is preferred and
-1 if the manual approach was preferred (so that the average will
be 0 if the approach are equal). The mean of−0.2 indicates that
four users preferred the AI interface while six preferred the manual
interface. The t-test column is the significance level at which the
alternate hypothesis ofµ 6= 0 is accepted, using a two-sided t-test.

The negative means show that on all criteria, the manual inter-
face performed better than the AI, which is very disappointing. Pos-
sible reasons for this and improvements are discussed in the conclu-
sions.

Result Mean σ (mean) t-test
Task average difference -0.22 0.11 83%
Closeness difference -0.75 0.21 98.5%
Preference -0.2 1.03 N/A

Table 1: Average results

7.1 Genetic Algorithms

Our goals for the genetic algorithm were that it should:

1. Make noticeable improvements (however slight in the first
few generations) with each generation of solutions.

2. Converge to a solution with a very high acceptance rating (e.g.
with a percentage score, 90% or more).

3. Converge within 40 to 50 iterations (40 to 50 minutes of user
time) of the walk-through engine to an acceptable solution.

The results in these criteria were as follows:

1. Due to a convergence rate of 0.2, the algorithm was allowed to
make noticeable changes to the scene on each iteration. How-
ever, since a range of scenes is produced on each view (i.e.
4), these changes are not immediately apparent. This is inten-
tional, however, as the user must be given as much choice as
possible as to which scenes they wish to use as a guide for the
scenes to follow.

2. Since the algorithm in the final system is set to run until an
acceptable solution is found, and not for a set number of gen-
erations, an acceptable solution is always found.

3. Depending on the user’s attention to detail, an acceptable so-
lution is usually found within 10 to 15 generations. In our ini-
tial projections, we imagined a user taking a minute to view
one scene at a time, and thus the estimate of 40 iterations
means that with 4 scenes viewed at a time we have met our
goal in this regard.

However, our initial estimate assumed that a user would take
a minute to view each scene. However, user testing showed
that users took a maximum of a minute to view each set of
4 scenes, and thus took only 10 minutes to find an intended
solution, exceeding our goal of 40 minutes by a factor of four
to one.

The results therefore show that the Genetic Algorithm performed
well beyond our initial expectations.

7.2 Scene generation

The goal of the Scene Generator was to be able to produce a scene in
about 2 seconds. A balance had to be struck between visual quality
and generation time. The attempt to produce better looking trees
using meta-tubes did yield good results where the joins between
branches were smooth and the method was general enough to be
applied to any type of tree. Unfortunately, the generation time was
in the order of minutes and therefore unacceptable for an interactive
system. The bottleneck was discovered to be the generation of the
scalar field from the meta-tube assembly (see Figure 3). Hence, the
trees were constructed from cylinders instead and the generation
time was in the order 2-3 seconds.



7.3 Rendering

Despite the limitations on preprocessing and having to render four
scenes simultaneously, the renderer was able to achieve well over
15 frames per second on our test system1, and generally over 60
frames per second. Even in the worst case, the frame rate exceeded
15 frames per second.

The processing took longer than we would have liked, with an
average of 3 seconds to preprocess each scene. Further work needs
to reduce the preprocessing time.

8 Conclusions

Our current implementation does not produce the results we ex-
pected. Given the success of interactive evolution in similar of com-
puter graphics [Sims 1991; Rowland and Biocca 2000], it seems
likely that the problem is with our implementation and not the con-
cept. Further studies need be done to determine the problem.

As noted by Sims [1991], interactive evolution depends on the
system being able to create individuals quickly enough. Our cur-
rent preprocessing time is rather high, possibly as a result of the
scene generator and the renderer being built as independent modu-
lar systems. While this is good practice from an engineering point
of view, a tighter coupling of the scene generator and the renderer
may allow preprocessing times to be reduced. One approach is to
have the scene generator assist in creating level-of-detail meshes,
using its knowledge of the underlying structure.

One possible problem area is the number of parameters. Row-
land and Biocca [2000] use 104 degrees of freedom and 1625 bits
to control a single sculpture, and Sims [1991] uses structured genes
to create an unbounded genetic space. In contrast, our implemen-
tation uses only 21 parameters and 70 bits to control all the aspects
of a scene, and 9 parameters are devoted purely to lighting. This
makes it possible for users to easily determine the effects of indi-
vidual parameters, and hence assemble the scene by hand with little
experimentation. If the number of parameters was made an order
of magnitude larger, manual tuning would become far less feasible.
Further testing would be required to determine whether the AI will
cope with such a large number of parameters. Since the AI treats the
bit string as a number of small independent strings, it is expected to
be able to handle the added complexity. Adding parameters would
have real value, as there are many aspects of the scene that currently
cannot be controlled (such as cloud density, tree size, tree tilt, bark,
grass etc).
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Figure 5: The user interface

Figure 6: A screenshot from the implemented system.

Figure 7: Another screenshot.

Figure 8: The level-of-detail for terrain (the camera is on the left of
the image).

Figure 9: A close-up shot of the smooth join between limbs of a tree
generated using meta-tubes and the Marching Cubes algorithm.


