
� ���������
	�	
�������������������������� � !���#"$�%���

Nico de Wet
Dept. of Computer Science
University of Cape Town

ndewet@cs.uct.ac.za

Nadim Yazdani
Dept. of Computer Science
University of Cape Town
nyazdani@cs.uct.ac.za

Bonnie Lam
Dept. of Computer Science
University of Cape Town

blam@cs.uct.ac.za

Ken MacGregor
Dept. of Computer Science
University of Cape Town

ken@cs.uct.ac.za

14 October 2002
Paper number: CS02-11-00

&('*),+.-0/*12+

The use of middleware has been acknowledged as the principal
means of simplifying distributed applications building in the en-
terprise. Wireless messaging middleware, in particular, allows
loosely coupled distributed components and has emerged as being
well suited to the wireless environment. In this paper we present
a lightweight wireless messaging middleware solution which ad-
dresses the reliability and bandwidth issues associated with wireless
links.

3 465 +.-87:9<;=12+�>?7 5

Middleware, of which wireless middleware is a specialized
subset, has been recognized as an important means of simplifying
distributed system construction [Emmerich 2000]. Middleware
resolves heterogeneity, and facilitates communication and co-
ordination of distributed components. Since middleware solves
a real problem and simplifies distributed system construction,
middleware products are being adopted in industry.

Middleware simplifies distributed system construction by ad-
dressing the difficulties that arise when building distributed
applications. The sources of these difficulties can be broadly
categorized into areas of network communication, coordination,
reliability, scalability and heterogeneity. Addressing the wealth of
difficulties directly using network operating system primitives, and
hence without using middleware, is generally too expensive and
time consuming.

Wireless middleware, as a specialized subset of middleware,
has come into demand due to the proliferation of wireless net-
works. Additionally, in the last few years, there has been an
upsurge in the development of the mobile devices sector. Personal
Digital Assistants (PDAs) and a new generation of cellular phones
have the ability to access different types of data. With this, the
role of wireless middleware has become increasingly important
in providing a reliable channel for data access between mobile
devices and servers on a wired network.

Wireless middleware is an intermediate software component
that is generally located on a wired network, between the wireless
device and the application or data residing on a wired network.
The purpose of the middleware is to increase performance of

applications running across the wireless network by serving as a
communication facilitator between components that run on wire-
less and wired devices [Wireless-Nets 2002]. Wireless middleware
serves as a communication facilitator by addressing the numerous
ways in which communication can fail between components in a
distributed application. Sources of communication failure, amongst
many others, include a component going off-line voluntarily but
unexpectedly, a component unexpectedly terminating, a component
failing to respond to a request in a reasonable amount of time, and
communication being severed in the midst of a request [Sundsted
1999].

Typical wireless middleware solutions incorporate intelligent
restart and store-and-forward messaging functionality. Intelligent
restart is a recovery mechanism that detects when a transmission
has been cut, and, when the connection is re-established, resumes
transmission from the break point instead of at the beginning of the
transmission [Wireless-Nets 2002]. Intelligent restarts are required
in order to enhance the robustness of the distributed system that
is build using the middleware. A robust distributed system must
detect failures, reconfigure the system so that computations may
continue, and recover when a link is repaired [Sundsted 1999].
Store-and-forward messaging involves the implementation of
message queuing to ensure that users disconnected from the
network will receive their messages once the station comes back
online.

The basic requirements of wireless middleware can be met
by messaging middleware. Messaging middleware serves as a
tool for coordinating distributed application components and
removes the responsibility for ensuring that messages are delivered
reliably and correctly from application components. Messaging
products [Softwired 2002; Spiritsoft 2002; Presumo 2002] allow
distributed application components to communicate and coordinate
their activity (via messages) by providing critical services such as
message queuing, message persistence, guaranteed once-and-only
once delivery and priority delivery [Silberschatz et al. 1997].

In this paper, a new lightweight wireless middleware solu-
tion, henceforth known as Wireless Application Middleware
(WAM) is presented. The principal WAM design goals are to
simplify distributed application development by focusing on the
reliability and bandwidth issues associated with networks that
incorporate wireless links. Reliability issues are addressed by

WAM in two ways. Firstly, WAM is based on a subset of the
Java Messaging Service (JMS) application-programming interface
(API) [Sun 2002a], a message-oriented middleware (MOM) API
adopted in industry [Softwired 2002; Spiritsoft 2002]. Secondly,
the JMS API is extended to include client message buffering, an
intelligent restart mechanism and data compression, the resul-
tant API being known as the WAM-JMS API. The WAM-JMS
API is designed to run on both high-end devices connected to
broadband-wired networks as well as mobile PDAs running the
CE .NET operating system. Bandwidth conservation issues can
be addressed by WAM at both the transport and application layer.
The development of an optimised wireless transport protocol,
which conserves bandwidth, is investigated and text compression
is incorporated into WAM.

Section 2 introduces the JMS framework, our development
environment (the Microsoft .NET Framework and Compact
Framework Beta Version) as well as TCP optimised for wireless
links. Related work is outlined in section 3. Addressing reliability
issues is discussed in section 4, while in section 5, we describe the
project methodology and approach. Section 6 discusses testing and
findings. Demonstration applications are described in section 7.
Finally, some concluding remarks are made in section 8 and future
work is suggested in section 9.

@ A /=1*B2C:-07<; 5 9
DFE?G H%I.JLKNMPORQTS<U
The Java Message Service (JMS) Application Programming Inter-
face (API) allows applications to create, send, receive, and read
messages. Messages can arrive asynchronously, meaning the client
doesn’t have to specifically request messages in order to receive
them. In addition, the programmer can specify different levels of
reliability depending on the type of message that is transmitted.
Unlike RPC, JMS is loosely coupled meaning that the sending and
receiving applications do not both have to be available at the same
time to enable communication [Sun 2002b]. In other words the
sender and receiver need not know anything about each other when
communicating. This is particularly useful in the wireless domain
because of the ”sometimes on” characteristics of wireless devices.

A JMS implementation is composed of a JMS Provider, JMS
Clients, Messages and Administered Objects.

JMS Provider: This component provides administrative and
control features. It is the part of the system that implements JMS
interfaces. The J2EE 1.3 platform includes a JMS provider.

JMS Clients: These are components or programs that are the
producers and consumers of messages. In the wireless domain
clients may include cellular phones and PDAs.

Messages: Messages are the objects that are transmitted be-
tween JMS clients.

Administered Objects: These are configured by the adminis-
trator, and include destinations and connection factories. Clients
use naming and directory services to look up administered
objects. For one client to establish a logical connection with
another through the JMS provider, it needs to perform a lookup
of administered objects in the naming and directory service being
used.

JMS supports the two more common approaches to messaging,
namely point-to-point and publish-subscribe. WAM implements

the point-to-point model in which each message has only one
consumer. Hence only one JMS client may receive messages from
a queue at one point in time however any number of clients may
post messages to a queue. Messages are posted to a specific queue
and are retained until either they are consumed or until they expire.
Figure 1 illustrates point-to-point messaging, in which each queue
has a single reader but one or more senders.

Figure 1: The JMS Point-To-Point Model

JMS includes reliability mechanisms that tackle several issues in-
herent in message-oriented middleware. The first of these relia-
bility mechanisms is message persistence in the provider, which
allows messages to survive provider failures. Message expiration
is a second reliability mechanism that may prevent queues filling
to capacity in the provider due to inactive clients not reading from
their queues. The final reliability mechanism is message acknowl-
edgement. For a message to be considered as having been con-
sumed successfully, it has to be acknowledged by the receiving
party, which results in the message being deleted in the provider.
However, as discussed in section 4, these mechanisms are not suf-
ficient for wireless networks.

DFEVD W*JYX[ZN\^]Y_#H%`
SbadcfegI.Jihjak_�J.\ J�lmlon�p2qo].adc
A major concern in any wireless middleware solution is the limited
bandwidth associated with wireless links. JMS clients instantiate
a Connection object that transparently sets up a TCP connection
to the provider. The TCP connection is of concern in wireless
middleware since the performance of regular TCP is adversely
affected by the presence of a wireless link(s) between the sender
and receiver. This problem is being and has been researched
extensively.

Wireless links have properties that affect TCP performance.
Most importantly they do not provide the degree of reliability that
hosts expect. The lack of reliability stems from high uncorrected
error rates (or bit-error rates) of wireless links (especially terrestrial
and satellite links) when compared to wired links. Additionally
certain wireless links are subject to intermittent connectivity
problems due to handoffs. Handoffs occur in cellular wireless
networks such as GSM and involve calls being transferred between
base transceiver stations in adjacent cells.

The properties of wireless links mentioned have adverse ef-
fects on the TCP congestion control algorithms [Dawkins et al.
2001]. The root of the problem is that congestion avoidance in the
wired Internet is based on the assumption that most packet losses
are due to congestion. This assumption is certainly correct in wired
links and subnets that have low uncorrected error rates. However,
as has been mentioned, wireless links do not enjoy low uncorrected
error rates.

The result of the incorrect error-rate assumption is poor TCP
performance experienced by users. The reason for this observed
poor performance is that TCP incorrectly presumes network

congestion when packets fail to arrive. The sender assumes packet
loss (say due to congestion-related buffer exhaustion) and thus
substantially reduces traffic levels as it probes the network to
determine ”appropriate” traffic levels.

Various recommendations for improving wireless TCP perfor-
mance exist [Balakrishnan et al. 1996], which can be categorized
into link-layer, end-to-end and split-connection solutions as well as
header compression techniques [Degermark et al. 1996]. Despite
these improvements an important consideration is whether one
needs to use TCP in a wireless JMS implementation such as
WAM. Industrial wireless JMS implementations [Softwired 2002;
Spiritsoft 2002] and other industrial MOM solutions [Broadbeam
2002b; Broadbeam 2002a] use UDP based reliable messaging
protocols, which are essentially UDP with a thin reliability layer,
as specified in RFC 908.

The argument in favor of using UDP [Bonachea and Hettena
2000] with a thin reliability layer, instead of TCP, is that it typically
provides the lowest overhead access to the network and is widely
portable. Additionally, when considering wireless links with their
limited bandwidth, UDP becomes attractive due to less header
overhead associated with each packet. UDP datagrams contain an
8-byte header whereas in TCP implementations one finds 20 to 40
byte headers.

The scope of the WAM system does not allow for the con-
struction of a UDP based reliable messaging protocol and hence
regular TCP sockets are used. However the design of the WAM
system must be modular to allow for the replacement of the
networking module when a UDP based reliable messaging socket
becomes available.

DFEVr n�]se0]f`tp2qius_�JYlmlga^p2c
Data compression can be used on messages sent to and received
from JMS message queues. This is particularly essential in wire-
less devices with limited memory and processing capacity, so as
to conserve bandwidth. Compressed messages also save storage
space in message queues in the JMS provider. Data compression
techniques are data type dependant and text compression is incor-
porated into WAM. The ZIP text compression algorithms [Krueger
2002], which are enhancements of the LZ77 algorithm [Stallings
2000], are used.

DFEkv H%I.JPExwzy[H{`|p[qiuN]s},e�~�_6]Nq!JY�:p._��
The WAM development platform was chosen to be C# using
Microsoft Visual Studio .NET. A suitable development language
and environment had to be found for an API that runs on Windows
CE .NET. Microsoft announced the beta release of the .NET
Compact Framework [Microsoft 2002b] in the first quarter of 2002
and subsequently released the beta 1 version of the .NET Compact
Framework in July 2002.

The advantages offered by the .NET Compact Framework
are significant when developing an application in C# and Visual
Studio .NET. The .NET Compact Framework offers a subset of
the desktop .NET Framework meaning that developers can reuse
existing programming skills and reuse code. Moreover one can
migrate portions of existing .NET Framework applications to smart
devices, this is because most of the library calls are the same,
the language is the same (C#) and the environment is the same
(Visual Studio .NET). An additional advantage offered by the
.NET Compact Framework installation is an emulator built into
Visual Studio .NET which can be used for testing purposes. An

API targeting CE .NET would benefit in terms of development
efficiency when using the .NET Compact Framework and as such
the decision was taken to use this extension to Visual Studio .NET
in the WAM project.

DFEk� n%a lme�_�aV�2Z.e0JY�(Q�u�uN\Va^},]se�a^p2cP�<Z�ak\^�2adc.X(H*JY}YI2c�p�\^pNX2a J�l
Contemporary distributed applications are rarely built from the
ground up using network operating system primitives (sockets). In-
stead technologies such as JNDI (Java Naming and Directory Inter-
face) [Sun 2002c], RMI (Remote Method Invocation) [Sun 2002d],
ADSI (Microsoft Active Directory Service Interfaces) [Microsoft
1999] and Remoting [Liberty 2001] are used. Similarly data sent
through the network is not normally sent in an unstructured format,
as happens when object serialization is used before transmitting ob-
jects through a network. The technologies mentioned are used in
open-source JMS implementations and give insight into the possi-
ble ways of constructing the WAM system.

� ���*� /�+ � 9���7|-�B

JMS provides a viable alternative for communicating in the wire-
less domain where unreliable connectivity is expected. Traditional
JMS was designed to allow Java applications to communicate with
existing wire-line MOM systems. As a result, a full JMS imple-
mentation is too ”fat” for wireless devices because low power con-
sumption and a smaller memory footprint are required [SpiritSoft
2001]. Two primary wireless JMS products exist and they make
use of lightweight JMS libraries in order to function effectively.

rFE?G O�uNak_�a e�O�p.��e
�%H%I�J�O�u�ak_�a emQ�_�}YINa e0Js}�egZN_�J
SpiritSoft has developed a commercially available JMS implemen-
tation, namely SpiritLite, which is specifically designed for use
by mobile devices. SpiritLite offers a small footprint by making
use of SpiritSoft’s Java LightWeight Message Service (JLWMS), a
stripped-down version of JMS. In addition JLWMS makes use of
a lightweight wrapper around a JLWMS message payload thereby
significantly reducing the overhead associated with JMS messages
(300 bytes per message even when empty). SpiritLite also allows
serverless messaging between clients and gives the client the op-
tion to use UDP transport instead of TCP when reliability is not an
issue.

rFEVD O�p.��e���ak_6JY�L��ax�<Z.l��N�FM�p2�NaV\ J
The iBus//Mobile product from Softwired makes use of Wireless
JMS (WJMS), a lightweight implementation of JMS. The design
goals of iBus//Mobile are similar to that of SpiritLite in that a small
footprint is offered. WJMS is capable of implementing both point-
to-point and publish/subscribe in a Java library of only 70k, and at
run-time an iBus//Mobile applications requires as little as 50k heap
space [Maffeis 2002].
IBus//Mobile is able to implement WJMS and still adhere to the
JMS message formats (as specified in the official JMS specification
[Sun 2002a]) by using a Mobile JMS Gateway that sits in between
the clients and the JMS Provider (a J2EE Provider), as shown in
Figure 2. To the JMS provider, the gateway appears to be a regular
JMS client. From the client’s point of view, however, the gate-
way acts as a communications hub and message format translator.
The gateway guarantees delivery of messages to the receiving party.

The WJMS client library is intended for deployment on pro-
grammable wireless devices, but the iBus//Mobile architecture also
caters for non-programmable devices such as pagers and cellular

Figure 2: The iBus//Mobile Architecture

phones, as shown in Figure 2. Therefore it could be said that the
client library is optional and depends on the nature of the client
device.

� &i9t9<- �)Y)Y> 5 C ���*� >?/�'�> � >�+�� 4)Y)�; �)

As described in Section 2, JMS supports both the point-to-point
and publish/subscribe messaging paradigms. For the purposes
of this investigation we will focus primarily on point-to-point
messaging. Since publish/subscribe essentially uses the underlying
queue infrastructure used in point-to-point messaging, we feel it
important to focus on developing a robust infrastructure that would
initially support point-to-point, and be easily extensible to include
publish/subscribe when required.

We have decided to implement a subset of the JMS architec-
ture. Because our primary intention is to investigate reliability in
the wireless domain using C# as the development environment,
implementing the entire JMS specification in C# is both unneces-
sary and beyond the scope of this investigation. Having mentioned
this, there exist a few areas where a ’pure’ implementation of
JMS (which has been developed mainly for wired networks)
would prove unsatisfactory in the wireless environment. Our
implementation aims to address these issues.

Figure 3: The JMS Programming Model

We intend to maintain the original JMS class hierarchy, shown
in Figure 3. The Connection Factory and Destination (Queue)
classes would both perform lookups using a basic naming server.
Sessions will use the Auto-Acknowledge mechanism, meaning that
all messages received from the provider need to be acknowledged.
Sessions are also non-transactional by default. The Message

Consumer receives messages synchronously, and the user of the
API can decide between blocking and non-blocking synchronous
receives. The Message Producer sends messages to a queue at the
provider and then waits for an acknowledgement. If the acknowl-
edgement fails to arrive in time then our reliability mechanisms,
discussed later in this section, will take effect.

The Message class will initially support text messages only
but JMS is modular enough to allow other message types to be
plugged in easily. We have included the JMS message header as
is, however because not all message header fields are necessary for
our purposes we will provide support for the following:
� JMSDestination
� JMSDeliveryMode
� JMSReplyTo
� JMSType
� JMSRedelivered

We intend to provide added functionality to JMS in order to sat-
isfy the requirements of wireless messaging. More specifically, our
implementation will address the issues mentioned in the Introduc-
tion:

v�E?G U?c.e0J.\k\ka XNJ�c.e�W=J�lmem]�_�e0l
If the provider fails to acknowledge a sent message or a connec-
tion is cut at any time, a reconnection method is called to try to
re-establish the connection transparently to the client. In addition,
the WAM provider will maintain state on behalf of the disconnected
client in order to reduce the overhead of re-establishing the connec-
tion and session details. A client connected to the Provider on a low
bandwidth wireless link will thus benefit by saving time that would
have to be taken to restore its state in the Provider. Naturally, if re-
connection fails after a specified time period the provider will cease
to maintain the client’s state.

v�EVD spY�
�t]NcN�N��ak�NegI
We will investigate the use of message compression to decrease the
amount of data that needs to be transmitted over low bandwidth
wireless links. To put compression into practice we will extend
the Message class to include compression and decompression
methods, and the message header to include a JMSCompressed
flag. A client wishing to compress a message would call the
compression method and set the JMSCompressed flag. At the
receiving end the JMSCompressed field would be read and the
message decompressed if necessary.

Furthermore, bandwidth constraints will be reduced by not
serializing the Message class before transmission across the
wireless network. Object serialization produces metadata which
increases overall packet size. Having mentioned this, we have
discovered that object serialization is not supported in the Windows
CE .NET Compact Framework Beta Version, as confirmed by
Ginger Staffanson of Microsoft [Staffanson 2002].

v�EVr OFemps_�J���]Nc�����~.p._��#]�_6�¡M�J�lml�]sX2aVc�X
This is intrinsic to the WAM framework. The provider stores mes-
sages in queues and also logs them to disk if they are specified
as being persistent. In addition, the client implements a message-
queuing mechanism whenever the connection to the provider fails
and messages are still being sent by the user. Once a connection is
re-established the queued messages are delivered to the provider.

¢ £ � +.¤=7<9�7 � 7�C|�j/ 5 9¥&f¦t¦*-07�/*1�¤

The WAM Project followed an incremental analyse-implement-
redesign methodology; in other words each part of the system was
analysed, coded, tested and if necessary redesigned. Analysis of
the system was performed using the Unified Modelling Language
(UML). In the initial phases, Use Case diagrams and their corre-
sponding narratives were produced, and these were subsequently
refined as the project evolved. Sequence diagrams were also pro-
duced to model the inter-class communication required for achiev-
ing specific tasks. Using these diagrams and with the aid of the
JMS Specification, we arrived at a conceptual class diagram for the
WAM-JMS API. In addition we abstracted out the components that
would be required for a functional system. The components and the
functions which they are required to perform are listed as follows:

1. A Naming Server, which maintains information on the loca-
tion of WAM Providers and the existence of queues. It must
support three basic sets of operations on this information,
namely adding, deleting and performing lookups. It was felt
that the relatively small size of our infrastructure did not
warrant the use of a large scale Naming and Directory Service
(NDS) such as ADSI. Moreover only a basic set of services
is required and we could reduce unnecessary overhead by
catering for these services only. Thus a lightweight Naming
and Directory Service, known as WAM-NDS, would be
developed with the aim of providing efficiency and the lowest
overhead for our basic set of operations.

WAM-NDS would use UDP as its transport layer protocol.
Since WAM-NDS operates as a simple request-response
service there is no need to use a stream-based, connection-
oriented protocol such as TCP. The connectionless, unreliable
UDP is sufficient for our purposes and makes WAM-NDS
operations occur considerably faster than if TCP were used.

2. An Administrative Console for adding and deleting the in-
formation in the WAM-NDS. The administrative console may
conceptually be located anywhere on the network so it must
be designed with remote access capability. It has been de-
cided that for the purposes of this project, the WAM provider
will contain an embedded administrative component. This is
simply done for convenience in order to reduce the number of
standalone components in the infrastructure.

3. The WAM Provider is the central core of the entire
infrastructure. The message queues physically reside at
the Provider. When the Provider starts it must register its
presence with the Naming Service. The Provider will require
some mechanism to keep track of details pertaining to each
queue. These details include knowing which client is reading
from a queue, restricting readership of a queue to one client
only and knowing how many messages are in the queue
at any time. The Provider should be able to dynamically
create temporary queues and delete them when the client
disconnects. It must also provide message persistence if the
message header specifies this.

The Provider will also need to maintain information
about each client. A unique ID is assigned to each client upon
connection establishment and serves as a means by which the
Provider will identify individual clients. The Provider should
maintain state on behalf of the client in case a connection is
dropped unexpectedly. It should therefore be able to ’rebuild’
the connection parameters if a client reconnects within a
specified time period.

4. Two WAM-JMS APIs, one for a regular wired network
where regular disconnections and low bandwidth are uncom-
mon, and another specifically tailored for the wireless link.
Compression capability will be supported in both versions but
intelligent restarts and client-side message queuing is specific
to the wireless API.

Implementation of the various components was carried out using
Microsoft Visual Studio .NET and C# in particular. The WAM-
NDS was the first to be constructed since the other components are
reliant on a Naming Service during initialization procedures. Both
the point-to-point and publish/subscribe messaging paradigms
are supported by the WAM-NDS, hence it can be used in similar
investigations on publish/subscribe messaging. WAM-NDS
maintains two information bases. One concerns WAM Providers
and their network location while the other involves confirming the
existence of Destinations.

Next the generic (non-wireless) API and the WAM Provider
were developed in parallel. The development of the components
proceeded iteratively. The modularity of the API and the ordered
sequence in which classes must be executed in the API eased
the development process to some degree. The JMS Specification
places restrictions on the order in which classes are created - for
example, a ConnectionFactory object must be created in order
to create a QueueConnection, which must be created in order to
create a QueueSession, and so on (Figure 3).

The Provider is composed of two interacting components - a
networking subsystem and a message management subsystem.
The networking subsystem contains a multi-threaded TCP/IP
server which receives packets from clients and passes them to the
message management subsystem. The packets are read, interpreted
and acted upon by the message management sub-system.

An Administrative Console has been incorporated into the
Provider. The console allows the WAM Administrator to add and
delete queues from the WAM-NDS and Provider. It also supports
commands specific to the Provider, such as viewing the details of
connected clients, dropping client connections and viewing queue
details. The console uses a command-line interface similar to the
JMS Provider in J2EE (Java 2 Enterprise Edition) and most of the
commands are syntactically similar. The Administrator also has
the option of using a menu if this is preferable.

The next step was to devise a suitable mode of communica-
tion between the WAM-JMS API and WAM Provider. Ideally a
distributed object technology such as RMI would fulfil our re-
quirements. The .NET framework’s distributed object mechanism,
known as Remoting, simplifies distributed application building.
Knowing that object serialization is not supported by the CE.
.NET Compact Framework, it would seem unlikely that Remoting
be available. Our assumptions were confirmed by Windows CE
Program Manager Alex Yakhin: ”The remoting functionality
is not included in . NetCF. Your best bets would be Sockets or
WebServices” [Yakhnin 2002].

We therefore shifted our attention to a lower-level alternative
- designing an application protocol using Sockets. This effectively
meant building a protocol ”from the ground up”. Although
application protocols are said to be cumbersome and potentially
error-prone [Sun 2002d], they nevertheless prove effective if
implemented carefully as we have discovered. Furthermore,
because the messages making up the protocol are short, delimited
strings they provide very little overhead - an advantage on slow
wireless links. All communication between the client APIs, the
WAM Provider and the WAM-NDS is achieved by means of

application protocols. The strings which make up the API-Provider
protocol are of the general form:

[client ID]”:”[code]”:”[rest of message]

The client ID identifies the client to the Provider; the code
specifies the exact type of the message and the rest of the message
consists of one or more comma-delimited fields.

Example: 2324:7:billing,,n,

In this case, 2324 is the Provider-assigned client ID, 7 is the
message code corresponding to the API requesting a message from
a particular queue, billing is the name of the queue and n means
that the call is synchronous and non-blocking (the API implements
a timeout mechanism in case no messages are in the queue). The
Provider replies with the following if a message is in the billing
queue:

Example: 2324:0:[WAM-JMS message],

Code 0 corresponds to a normal WAM-JMS message. The
WAM-JMS message consists of comma-delimited header fields
(see Section 4) followed by the message body.

The next phase of development involved incorporating the
reliability mechanisms, described in Section 4, into the WAM
System. The sending and receiving methods of the generic API
were adjusted to detect disconnections from the Provider and
attempt to reconnect. The Provider was enhanced with a client
state-saving mechanism to allow reconnected clients to carry on
where they had left off before the disconnection. More specifically,
the Provider restores any temporary queues created by the client,
and re-registers the client as a reader for queues which the client
was reading from previously.

Persistence capability was also added to the Provider. Mes-
sages that arrive at the Provider with the JMSDeliveryMode header
field set to persistent are immediately serialized to permanent
storage in case of an unforeseen Provider failure. In the event of
failure, when the Provider reboots it will recreate all administra-
tively created queues and repopulate these queues with transient
message headers. The transient message headers serve the purpose
of pointing to the persistent messages in the Provider’s persistent
store. In addition, by putting only the message headers of persistent
messages in queues, the Provider is able to conserve memory.
The usefulness of a persistence mechanism is illustrated in the
demonstration application of Section 7.

Support for temporary queues was incorporated into the Provider
and client APIs. This allows queues to be created ”on the fly” by
client applications. Temporary queues prove particularly useful
when an API does not have access to a permanent queue, but would
nonetheless require a response from some backend application
after enqueuing a request.

Finally, a compression mechanism was included for text
messages that exceed an experimentally-determined threshold
size. The compression library used was SharpZipLib an open
source C# translation of the full Java zlib library, originally
developed by the Free Software Foundation (FSF) for text message
compression [Krueger 2002]. Although only text compression was
implemented, the modularity of JMS allows other message types
to be easily extended with their own compression schemes.

§ ¨��),+�> 5 C©/ 5 9 ���)�; � +,)

WAM system testing was done iteratively. Separate tests were
firstly conducted on the Provider, the general (desktop) WAM-JMS
API, the CE.NET WAM-JMS API and text compression before in-
tegration tests were conducted. It should be noted that correctness
rather than performance testing on the WAM system as a whole
was more feasible. Due to the unavailability of a wireless network
and limited availability of specific software needed for the project,
we could not conduct load testing. For example, it was not possi-
ble to test whether a large number of mobile clients connected to
the Provider would degrade Provider performance. Also, testing of
transmission speed was not meaningful, as TCP was used as the
transport protocol in a wired ethernet network, and indeed, trans-
mission of packets would be much faster than a wireless network.

ªFE?G S�_6pN«sa^��Js_#H*J�lme�aVc�X
Unit testing on the Provider initially consisted of writing a
program to test the Provider’s responses to client’s requests,
and checking whether its responses conformed to the message
formats in the WAM application protocol. Initial tests included
testing single requests, a sequence of requests and the menu
presented on the administration console. Coding errors found
were corrected before continuing to the next Provider testing phase.

The Provider was again tested after the additions of text
message compression and message persistence. For example, the
tests performed initially, namely, testing single requests, multiple
requests and the administration console were repeated. These tests
were repeated to ensure that additions to the scope of the services
provided by the Provider did not introduce adverse effects. Results
from these tests showed the Provider responded as expected.

ªFEVD ¬<J.c�Js_6]�\�QTS<U�H�JYlmemadc.X
Testing the general (desktop) WAM-JMS API involved writing
different test applications to test each aspect of the API. As new
classes were added to the API, the test application(s) were modified
to test these added classes, with specific emphasis on exception
cases.

The primary test application was a console chat program.
The chat program was developed hand-in-hand with the API. As
functionality was being added to the API, the chat program was
extended to include this functionality and at the same time test
that it worked as expected. Later on, when support for temporary
queues was included, another application was developed for testing
purposes.

ªFEVr `#y=ExwzyFH­QTS<U=H*J�lme�aVc�X
Two areas in the CE.NET API required testing, namely, splitting
string packets and reconnection with the Provider. Because of the
limitations of the .NET Compact Framework, a PacketSplitter class
had to be written to split the JMS message correctly. Reconnection
with the Provider was implemented in the CE.NET API due to the
high likelihood of frequent connection cuts when used in a wireless
network.

A few scenarios were used to test reconnection with the Provider,
for example, dropping the connection when the client program was
busy sending or receiving messages. To simulate a disconnection
between the mobile device and the Provider, the administration
console embedded in the Provider is used to close the client’s TCP
connection. Results from the tests indicated that reconnection

specified in WAM application protocol was correctly followed
and that the client application reconnected with the Provider
successfully. In addition, the Provider correctly maintained the
client’s state when a successful reconnection occurred.

ªFEkv U?cNa^emak].*`|p2q�us_�J�lmlgakp2cfH*J�lme�aVc�X
Initial compression testing was conducted to determine the length
at which text compression was worthwhile. Strings used for test-
ing ranged from 0 characters to 960 characters, some including
repeated patterns. All available SharpZipLib compression levels
were used to compress these strings. Compression levels 1- 3
were for fast compression and 4-9 for optimum compression. After
analysing the tests, it was decided that string messages of 300 char-
acters or longer were compressed, because they yielded a compres-
sion ratio of 1.5 and above. It was also decided the default compres-
sion level was set to 3 for fast compression. Fast compression was
chosen over optimum compression because optimum compression
levels only yielded a compressed string that was about two bytes
fewer than when using fast compression. For the WAMsms applica-
tion, it was decided that SMS messages longer than 160 characters
would be compressed to simulate real-life extended SMS messages.

ªFEk� ~2aVc��[aVc.X�l
To conclude, the WAM system functioned correctly as specified.
Despite the limitations inherent in the .NET Compact Framework,
such as lack of support for object serialization or Remoting, the
WAM system has proven that successfully developing a wireless
distributed system is still possible.

® ¯ ��° 7 5)�+.-8/�+�>?7 5 &(¦|¦ � >x1[/�+�>?7 5)

To demonstrate the usefulness of WAM-JMS in distributed appli-
cation building, two prototype applications have been developed.
The first, a Graphical User Interface (GUI) chat application called
WinChatta, was developed during the testing phase and further
refined as modifications were made to the WAM framework. The
application is designed to enable chats between individual clients;
however it could easily be extended to allow several parties to
communicate simultaneously. Unlike most other peer-to-peer chat
applications, WinChatta supports the sending of messages while
one party is offline. This ”loose coupling” of communicating
clients is where the power of messaging middleware lies.

The second application is intended to demonstrate a more
complex scenario where WAM-JMS could be used commercially,
and is discussed in more detail below.

± E?G h²QTM�l�q!l���y[³�e0J�c��NJs��O�MPO´OFJs_6«sa^}�J
WAMsms is a general-purpose Short Message Service (SMS) ap-
plication incorporating persistent messages and billing informa-
tion. The prototype application is built entirely over the WAM-JMS
framework and illustrates a scenario where WAM-JMS can be used
successfully in a commercial setting. The components of the sys-
tem are as follows:

� Clients - running the WAMsms application.

� The WAM-JMS Provider - holds message queues correspond-
ing to the client’s phone number as well as billing information.

� A Billing sub-system - retrieves billing information from the
Provider on a regular basis and calculates total costs and mes-
sage statistics for each user.

The user may send extra-long SMS messages, up to a maximum
of 8192 bytes (the maximum WAM-JMS message size). Messages
exceeding a certain size threshold are compressed before transmis-
sion, as described in Sections 4 and 5.

A typical interaction scenario involves several communicat-
ing clients, all transparently sending persistent billing information
to the Provider. The billing information is immediately written to
a persistent store at the Provider in case of a system crash. As a
result, the company running the SMS service is guaranteed not to
lose money in spite of a system failure. At the end of each day,
the billing sub-system performs a batch download of the billing
information and presumably incorporates this information into a
backend database (not implemented in this prototype). Figure 4
provides a conceptual representation of this scenario.

Figure 4: WAMsms Conceptual Diagram

Every time an SMS is sent from one client to another, billing
information is sent to the SMS Billing queue. Billing messages are
made are automatically specified as being persistent. The Provider,
on discovering that a message should be persistent, serializes the
message to a persistent store and adds it to the receiver’s message
queue. Normal SMS messages are by default transient however the
application developer can choose to enable persistence if required.

The user of the WAMsms application is initially prompted to
enter a login ID (or mobile phone number as the case may be).
The application goes on to perform a lookup of the Provider, client
admin queue and billing queue at the WAM-NDS server. It then
establishes a connection with the Provider. Messages that were
stored in the queue arrive one by one and the sender’s mobile
number is subsequently displayed in the Inbox. The user can
now read the newly-arrived SMS messages, including extended
messages.

Figure 5 shows the user about to send an SMS message. After
the user has entered the receiver’s mobile number, two messages
are sent to the Provider; the first being the message itself and the
other being the persistent billing message (sent to the SMS Billing
queue). The billing message contains the name of the sender in
the JMSReplyTo header field, and the body merely contains the
number of characters contained in the sent SMS. The latter piece
of information determines the billing structure in our prototype
however the application designer is free to include any data which
may affect billing, such as the time sent and the user’s contract type.

Figure 5: The WAMsms User Interface

The Billing Service in the WAMsms prototype is designed
for batch processing rather than continuous operation, although
once again the application designer is free to decide which model
is more suitable. The billing sub-system retrieves messages from
the SMS Billing queue at an ’off-peak’ time in order to maintain
the efficiency of the Provider. The Billing Service uses this billing
information to separate normal and extended SMS messages, and
applies different charges to each type of message.

µ ¶ 7 5 1 � ;*)Y>?7 5)

Wireless middleware is a relatively new field in distributed com-
puting. However, with the great advancements made in the field
of mobile computing, the need to develop wireless middleware to
facilitate communication between wireless applications becomes
apparent.

The goals of the Wireless Application Middleware (WAM)
project were firstly, to perform research on the challenges associ-
ated with developing wireless middleware and secondly, to devise
a solution that would resolve these challenges to some degree.
Our implementation, the WAM System, made use of a subset of
the Java Message Service (JMS) API [Sun 2002a], in particular,
the point-to-point model. The JMS API is a widely accepted
industry standard for developing Message-Oriented Middleware
(MOM). However, the JMS API is not specifically intended for
developing wireless MOM. Thus, to fulfil the basic requirements
of a wireless middleware API, the JMS API has been extended
in the WAM-JMS API to include message persistence, intelligent
restarts and data compression.

One of the challenges identified in developing wireless mid-
dleware and JMS in particular, was that regular TCP is not an
ideal transport protocol when used in wireless networks. Initially,
we proposed to develop an optimised version of TCP for wireless
middleware. The research phase of the project showed that a
reliably-delivered messaging (Rdm) socket based on UDP, as
opposed to an optimised version of TCP, would suit the require-
ments of the WAM system to a greater degree than optimised TCP.
However, the development of a Rdm socket based on UDP was
beyond the scope of the project and thus regular TCP was chosen
as the transport protocol despite known limitations when used in
wireless networks. Consequently, the focus of the project was
shifted to further research on designing and implementing the API
and the service Provider.

We have implemented our own Naming and Directory Ser-
vice (WAM-NDS), the WAM Provider and two client APIs, one
for the desktop and the other for the CE .NET operating system
(found in wireless devices). Transparent reconnection with the
WAM Provider is implemented in the CE.NET version of the
WAM-JMS API and message persistence is managed by the WAM
Provider.Two end-user applications,WinChatta and WAMsms were
developed for both environments to demonstrate the usefulness
of the WAM API. Data compression was incorporated into both
applications.

Due to the unavailability of a wireless network, correctness
testing, rather than performance testing on the WAM System
was more feasible. Both unit and integrated testing showed
the correctness of our WAM implementation. In addition, the
effectiveness of intelligent restart mechanisms was demonstrated
by the transparent reconnection functionality incorporated into the
CE .NET WAM-JMS API.

In conclusion, we have addressed some of the basic requirements
of wireless middleware and have demonstrated the usefulness of
the WAM System. The example applications developed using the
WAM System have made it clear that messaging middleware, such
as WAM, greatly reduces the complexity of seemingly difficult
operations by providing a decoupling layer between clients and
servers. We hope that the WAM Project will serve as a starting
point into further research in this field.

· ¸ ;*+.;|- � ��7�-¹B

Various areas in WAM could be considered for extensions. The
most pertinent extensions are considered here.

ºFE?G �|J.cN}YI�qo]�_��saVc�X�egI�Joh»QTM¼lm½Ylme8J�q
Benchmarking the WAM system when a wireless network is avail-
able would provide useful information for a deployment strategy.
Ideally one would conduct these benchmark tests using industrially
established metrics. A useful starting point for an investigation into
benchmarking is documents supplied by Sonic Software [SonicMQ
2002].

ºFEVD S�_6pN«sa^��Js_#]Nc��(e�I�J�wzn�O¾Q%u�u�\ka^},]se�a^p2c�H*½.u2JYl
The WAM Provider and the WAM-NDS server are currently both
console applications. It would be desirable to convert these to Mi-
crosoft Windows Service Applications. Microsoft Windows Ser-
vices are intended to be used for long-running executable applica-
tions that run in their own Windows sessions. In other words, the
services run without the need for a particular user to be logged on
[Microsoft 2002a]. Services have no user interface and can be auto-
matically started when the computer boots. Services can be started,
stopped and paused at will.

ºFEVr ¿�«�J._6]�\k\�QTS<U�y[³�e0J�c.lga^p2c�l
Security is one important aspect for which the WAM-JMS API
could be extended. For example, mechanisms for authentication
could be included when a client wishes to register as a reader of
a queue. The client could send a user name/password pair to the
WAM Provider for authentication, before registration proceeds.

The WAM-JMS API could also be extended to support other
types of JMS message types such as the JMS ByteMessage. A

new ByteMessage class could be implemented to support file
transmission. The JMSType field would be used to indicate the
message type. Extending the API to support multiple message
types implies extending the compression library accordingly.
While sending JMS messages, the client would check for the
JMSType and use the appropriate compression algorithms and
compression levels for that message type.

ºFEkv `#y=ExwzyFH¥QTS<U<y2³Ye8J�c.lga^p[c
Apart from the CE.NET API initiating reconnection with the WAM
Provider, another useful mechanism to include would be message
persistence in the API. It is known that the battery life of mobile
devices is very limited, so making messages persistent would guard
against battery failure. In order to provide some form of message
persistence, one would have to detect the battery level of the PDA.
The Power properties in Windows CE.NET allow the API program-
mer to obtain information about the battery level. The programmer
can then choose to make messages persistent once the battery level
falls below a certain percentage.

����À0� - ��5 1 �)

BALAKRISHNAN, H., PADMANABHAN, V. N., SESHAN, S., AND
KATZ, H. 1996. A comparison of mechanisms for improving
tcp performance over wireless links. In ACM SIGCOMM ’96.

BONACHEA, D., AND HETTENA, D., 2000. Amudp: Active mes-
sages over udp. Á bonachea,danielh Â @cs.berkeley.edu.

BROADBEAM, 2002. Axio, broadbeam’s mo-
bile software platform. Internet. Available:
http://www.broadbeam.com/pdf/axio white paper.pdf.

BROADBEAM, 2002. Expressq. Internet. Available:
http://www.broadbeam.com/pdf/expressq.pdf.

DAWKINS, S., MONTENEGRO, G., KOJO, M., MAGRET, V., AND
VAIDYA, N. 2001. End-to-end performance implications of links
with errors rfc 3155.

DEGERMARK, M., ENGAN, M., NORDGENAND, B., AND PINK,
S. 1996. Low-loss tcp/ip header compression for wireless net-
works. In ACM MobiCom.

EMMERICH, W. 2000. Software engineering and middleware: A
roadmap. In Proceedings of the conference on The future of Soft-
ware engineering, ACM Press, New York, USA, 117–129.

KRUEGER, M., 2002. #ziplib the zip, gzip, bzip2
and tar implementation for .net. Internet. Available:
http://www.icsharpcode.net/OpenSource/SharpZipLib/.

LIBERTY, J. 2001. Programming C#. O’ Reilly, July.

MAFFEIS, S., 2002. Jms for mobile applications and wire-
less communications. Internet. Available: www.softwired-
inc.com/people/maffeis/articles/softwired/profjms ch11.pdf.

MICROSOFT, 1999. Adsi open interfaces for managing and
using directory services - white paper. Internet. Available:
http://www.microsoft.com/windows2000/docs/adinterface.doc.

MICROSOFT, 2002. Introduction to windows ser-
vice applications. Internet. Available: ms-
help://MS.VSCC/MS.MSDNVS/vbcon/html/vbconintroduction-
tontserviceapplications.htm.

MICROSOFT, 2002. .net compact frame-
work overview. Internet. Available:
http://msdn.microsoft.com/vstudio/device/compactfx.asp.

PRESUMO, 2002. Internet. Available: http://www.presumo.com.

SILBERSCHATZ, A., KORTH, H., AND SUDARSHAN, S. 1997.
Database System Concepts. McGraw-Hill.

SOFTWIRED, 2002. Internet. Available: http://www.softwired-
inc.com.

SONICMQ, 2002. Benchmarking e-business
messaging providers (article). Available:
http://www.sonicsoftware.com/products/how to benchmark.htm.

SPIRITSOFT. 2001. Jms: Extending the enterprise to real time
wireless messaging. SpiritSoft Technical White Paper.

SPIRITSOFT, 2002. Internet. Available: http://www.spiritsoft.com.

STAFFANSON, G., 2002. Net 247 newsgroup -
remoting and .net cf? Internet. Available:
http://www.dotnet247.com/247reference/msgs/12/61219.aspx.

STALLINGS, W. 2000. Network Security Essentials - Applications
And Standards. Prentice Hall, New Jersey, USA.

SUN, 2002. Java message service specification version 1.1, April.

SUN, 2002. Java message service tutorial. Internet. Available:
http://www.http://java.sun.com/products/jms/tutorial/1 3 1-
fcs/doc/overview.html, April.

SUN, 2002. Java naming and directory interface. Internet. Avail-
able: http://java.sun.com/products/jndi/.

SUN, 2002. Java remote method invocation specification. revi-
sion 1.8, java 2 sdk, standard edition, v1.4. Internet. Available:
http://java.sun.com/products/jndi/, September.

SUNDSTED, T., 1999. Messaging makes its move. Internet. Avail-
able: http://www.javaworld.com/javaworld/jw-02-1999/jw-02-
howto.html, February.

WIRELESS-NETS, 2002. Wireless net-
work middleware. Internet. Available:
http://www.wirelessnets.com/articles/whitepaper middleware.htm.

YAKHNIN, A., 2002. Google groups
(group:microsoft.public.dotnet.framework.
compactframework). Internet. Available:
http://groups.google.com/groups?hl=en&lr=&ie=UTF-
8&group=microsoft.public.dotnet.framework.compactframework.

