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Abstract. The field of defeasible reasoning has a variety of frameworks,
all of which are constructed with the view of codifying the patterns
of common-sense reasoning inherent to human reasoning. One of these
frameworks was first described by Kraus, Lehmann and Magidor, and is
accordingly referred to as the KLM framework. Initially defined in propo-
sitional logic, it has since been imported into description and modal log-
ics, and implemented into many defeasible reasoning engines. However,
there are many ways in which this framework may be advanced theoreti-
cally, and many opportunities for it to be applied. This paper covers some
of the most prominent areas of future work and possible applications of
this framework, with the intention that anyone who has recently famil-
iarized themselves with this approach may then have an understanding
of the kind of work in which they could engage.
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1 Introduction

The KLM framework [40,43] has been the subject of extensions since it was
initially defined [12,23,34], as well as been implemented in defeasible reasoning
engines [52]. The focus that it has received compared to other defeasible reason-
ing formalisms [2,48,60] is justified by the KLM framework having three core
features: a well defined set of postulates, a preferential semantics, and relative
computational e�ciency. This enables a large degree of flexibility, as postulates
may be dropped, or additional ones enforced.

However, there are both theoretical challenges and potential applications
for this form of defeasible reasoning. This paper will attempt to compile some
current areas for future work. The various areas and problems covered are not
intended to be exhaustive, but is rather a selection of the most prominent fields
for future work. The intention of this paper is to provide a brief overview of a
selection of problems in this field for those who have a foundational understand-
ing of the field, without necessarily knowing the main candidate areas for novel
work.

This paper will first define the base propositional language and concepts in
defeasible reasoning, and then describe popular frameworks in the field before
describing the focus of this paper: the KLM framework. Chapter 3 will outline
some applications for defeasible reasoning and then chapter 4 will outline theo-
retical work in defeasible reasoning with an eye towards the previously described
applications.
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2 Background

Although the core principles of this paper are independent of a specific language,
in the spirit of the initial definition of the KLM framework the base language
of this paper is the propositional logic L, which is formed from a finite set of
propositional atoms P , denoted with small Latin letters p, q, r, ..., along with the
propositional connectives ¬, ∧, ∨, →, ↔ to form a set of well formed formulas
in the usual way, denoted with small Greek letters: ↵, �, �... ∈ L. A knowledge
base, K ⊆ L, is a finite set of well formed formulas. Classical logical consequence,
generated by Tarskian semantic entailment, will be denoted with �. A conse-
quence operator over some set of statements K, will be denoted Cn(K) ⊆ L, such
that Cn(.) in general is a set of formulas in the language.

Classical entailment, �, is informed by the regular semantics for propositional
logic. Let U be the set of all valuations, which are denoted u, v... where each
valuation is a function: L � {T,F} where T and F refer to true and false,
respectively. For any formula ↵ ∈ L, if it is the case that u(↵) = T , then it
is the case that u � ↵, read “u satisfies ↵”. This can be extended to sets of
formulas, such that for some K, then u � K if and only if for every ↵ ∈ K, u � ↵.
Satisfaction then defines classical entailment such that for some K ⊆ L and for
some ↵ ∈ L, then K � ↵ if and only if for every u ∈ U such that u � K, it is the
case that u � ↵.

In classical logic, reasoning is patterned along Tarskian notions of entail-
ment [54,63]. Broadly, Tarski identified three main properties for a reasonable
operation for a consequence operator Cn:

1. Inclusion: K ∈ Cn(K).
2. Idempotence: Cn(K) = Cn(Cn(K)).
3. Monotonicity: if K ⊆ K′ then Cn(K) ⊆ Cn(K′).

Any consequence operator that satisfies the above three properties is referred
to as a Tarskian operator. Inclusion simply enforces that everything explicitly
stated to be the case is in fact entailed, and idempotence states that the en-
tailment relation should derive all possible inferences given a set of statements.
These two properties are relatively uncontroversial, however monotonicity war-
rants discussion.

Formally, monotonicity states that for any two sets of statements K and K′
such that K ⊆ K′, then the set of inferences derivable from K must also be sub-
sumed by the set of inferences derivable from K′. The intuition is that adding
information will never retract a conclusion. If an agent could draw an inference
based on their knowledge at some point, then there is no information they could
learn that would invalidate that inference. Classical, monotonic reasoning accu-
rately models mathematical reasoning, as there is no defeasibility in mathemat-
ics: knowledge is built upon knowledge and there is no provable mathematical
theorem that invalidates a previously proven mathematical theorem. However,
it is relatively well established that this is not the case with human reasoning
[59], as humans frequently revise their beliefs about the world according to new
information.
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Therefore, monotonic reasoning is necessarily incompatible with defeasibility.
Defining a defeasible logic therefore requires dropping the property of monotonic-
ity, and the construction of new properties and axioms so as to accurately model
common sense reasoning patterns. These properties and axioms will then inform
either a semantics or a proof theory for defining defeasible reasoning.

2.1 Defeasible reasoning

In general, defeasible reasoning is defining reasonable notions of logical conse-
quence about knowledge that corresponds somewhat to the various ways that
humans reason on a day to day basis. Handling exceptions in information in a
sensible way, while still maintaining an intuitive method of modelling the in-
formation in question. The seminal example to illustrate the goal of defeasible
reasoning is the following “birds” knowledge base:

1. Bird → Flies

2. Penguin → Bird

3. Penguin → ¬ Flies

Under classical logics and notions of consequence, the above set of formulas
entails ¬Penguin. If Penguin were asserted, then the knowledge base is rendered
inconsistent and therefore everything is entailed. Defeasible reasoning formalizes
what it means for something to usually be the case, and what it means to draw
a conclusion from given knowledge that is treated as somewhat speculative, and
subject to retraction upon learning more information. If only points 1 and 2 were
known in the example above, it would be desirable to draw the inference that
penguins fly. However, when point 3 is added, it is then desirable that such an
inference is retracted. This mechanism of defeasibility is not present in classical
reasoning.

There have been a number of formalisms to capture the patterns of defeasible
reasoning. Some of the most popular or well-known formalisms will be briefly
covered before describing the framework that is the focus of this paper.

Belief revision Belief revision, first defined by Alchourron, Gärdenfors and
Makinson (AGM) [1,2], models an agent’s set of beliefs about the world by
encoding them as a formal set of statements, referred to as a belief set, and
defines operations that model the agent adjusting the belief set on receiving
new information: revision and contraction. The revision operator models being
told that a given statement, perhaps not currently derivable in the belief set,
is true, and modifies the belief set such that it incorporates the new statement
in a satisfiable way. Contraction is the inverse operation, where a statement is
provided with the information that it is not inferred from the knowledge base,
and the belief set is modified such that the statement is no longer entailed.
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Circumscription Circumscription is a well-known formalism for defeasible rea-
soning, and one of the first such nonmonotonic logics described. First defined
by McCarthy [48] and then revised by McCarthy again [49], it is one of the
most expressive defeasible logics. Circumscription defines a predicate over the
language that states whether or not a particular individual is normal or abnor-
mal, and furthermore states how, or how not, it is abnormal exactly. This is how
circumscription achieves its expressivity: a statement as imprecise as “besides
x, there is something else abnormal about y”. A drawback is that this places
a burden on the modelling process to precisely capture the domain knowledge,
including choosing which predicates are atypical, and in what way.

Default logic Default logic represents information as defaults with the intended
meaning of “most x’s are y’s”, or “typically a’s are b’s”. It was first described by
Reiter [60], and then revised by Reiter and Criscuolo [61]. It was originally de-
vised to enrich first-order logic, by adding the notion that there are default states,
assumptions that can be drawn as inferences in the absence of information to
the contrary, as a solution to the same core problem of nonmonotonic reasoning:
how to most e↵ectively model information containing exceptions. Default logic
does so by choosing to address a problem arising from modelling around the
exceptions: the problem of inheritance for non-exceptional subclasses. Default
logic was defined by Reiter proof-theoretically, but did not have a corresponding
semantics. The lack of a model theory means that it can be di�cult to choose
between di↵erent extensions, having to instead rely on intuition about what kind
of reasoning is suitable for a given domain [62]. However, Delgrande et al. [30]
defined a semantics for default logic, along with a number of extensions.

2.2 KLM approach

The KLM framework was initially defined in propositional logic, and encoded
defeasibility in an object-level binary connective, �∼, that is intended to be read as
“is typically” and forms a defeasible implication, e.g. the defeasible implication
↵ �∼ � is to be read as “↵ typically implies �” [40,43]. Therefore, the concept that
most birds fly, with some exceptions, can be reasonably represented using the
statement bird �∼ flies, which conveys that birds typically fly, and so allows for
the possibility that there are birds that do not fly. Contrast to the corresponding
statement in classical logics, bird → flies which will directly contradict with
any flightless birds present in the knowledge base. The inclusion of �∼ in the
language then requires the definition of a new language, LD ∶= L ∪ {↵ �∼ ��↵,� ∈L}, which is the language created by extending L with �∼ such that any two
formulas in L can form a defeasible implication, but �∼ may not be nested.

A corresponding notion of defeasible inference is also defined and denoted�≈, and can be read as “defeasibly entails”. Any such defeasible entailment rela-
tion satisfying the following set of properties referred to as the KLM properties
[43,23], presented as follows in LD, is referred to as LM-rational [23]:

1. (LLE) Left logical equivalence:
K �≈↵↔�,K �≈↵�∼�K �≈��∼�
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2. (RW) Right weakening:
K �≈↵→�,K �≈��∼↵K �≈��∼�

3. (Ref) Reflexivity: K �≈ ↵ �∼ ↵

4. And:
K �≈↵�∼�,K �≈↵�∼�K �≈↵�∼�∧�

5. Or:
K �≈↵�∼�,K �≈��∼�K �≈↵∨��∼�

6. (CM) Cautious Monotonicity:
K �≈↵�∼�,K �≈↵�∼�K �≈↵∧��∼�

7. (RM) Rational Monotonicity:
K �≈↵�∼�,K ��≈↵�∼¬�K �≈↵∧��∼�

Each of the above properties is an encoding of a pattern of reasoning that is
reasonable in a defeasible context. LLE essentially states that two statements
that are classically equivalent should have the same defeasible consequences. RW
continues what LLE started by stating that there is a weak form of transitivity
when there is a classical logical dependency: if a statement ↵ is a logical conse-
quence of a defeasible consequence of �, then ↵ is also a defeasible consequence
of �. Reflexivity is a self-explanatory property, and simply enforces that every
statement is a defeasible consequence of itself. And and Or govern how conjunc-
tion and disjunction interacts with defeasible consequence: And states that if two
di↵erent statements are defeasible consequences from the same premises, then
the conjunction of the two is a defeasible consequence from those premises. Or
states that if a statement is a defeasible consequence of two di↵erent premises,
then it is a defeasible consequence of the disjunction of those premises.

CM and RM are defeasible counterparts to classical monotonicity. Mono-
tonicity states that any new information will never result in a retraction of
an inference. CM is a modification of monotonicity for a defeasible language,
and states that strengthening the premises ↵ of a defeasible implication with a
statement � will never result in the retraction of a defeasible conclusion of ↵

provided that � was one of the defeasible conclusions of ↵ to begin with. This
change essentially leaves the door open for novel information, knowledge that
was not previously derivable from current facts, to result in an inference being
withdrawn. This weakening of monotonicity allows for defeasible statements.
However, CM is still too weak [43], as it does not allow for certain, intuitive
statements to be derived. In the case where the new information has nothing
to do with an existing inference, it is possible that the existing inference may
not be derived in the presence of the new information, even though there is no
reason for it to be withdrawn. This argument motivates the addition of RM,
which states that any new information that does not conflict with any existing
knowledge or inferences will not result in a retraction. This is a stronger property
than CM, and, in fact, in the presence of RM, CM is superfluous.

The KLM framework is based on a preferential semantics, where a preferential
interpretation, P ∶= �S,�, l� is defined as a set S of states, a partial order � over
S, and a mapping l ∶ S � U that assigns to every state a valuation in U [43].
The class of preferential interpretations that correspond to the KLM properties
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defined above are referred to as ranked interpretations, and have the property
that the partial order � is modular, meaning that � forms a total pre-order, and
essentially generates a number of “tiers” populated by members of S [43,23].
Therefore, ranked interpretations are often instead characterized in the following
way [23]: a ranked interpretation R ∶ U �N ∪{∞} is a function from the set of
valuations U to the natural numbers with infinity, such that R(u) = 0 for some
u ∈ U , satisfying the convexity property: for every i ∈ N such that R(u) = i for
some u ∈ U , then it is the case that for every 0 ≤ j < i there is a v ∈ U such
that R(v) = j. The rank of a valuation in R essentially encodes how that ranked
interpretation credits that valuation. The lower the rank of a valuation, the more
normal, or typical, the ranked interpretation views the situation corresponding
to the valuation, while valuations with rank ∞ represent impossible situations.
A ranked interpretation R satisfies a defeasible implication ↵ �∼ � whenever
for every u ∈ U such that u � ↵ and there is no v ∈ U such that v � ↵ andR(v) < R(u), then u � �. That is, R � ↵ �∼ � if and only if every valuation
that is minimal in R that satisfies ↵ also satisfies �. This can naturally be
extended to knowledge bases: a ranked interpretation R satisfies a defeasible
knowledge base K if and only if it satisfies every defeasible implication in K.
Note that this semantics allows classical formulas to be represented as defeasible
implications as well, since for some ranked interpretation R then: R � ¬↵ �∼ �
for some ↵ ∈ L if and only if u � ↵ for every u ∈ U such that R(u) ∈ N . Ranked
interpretations are linked to the KLM properties via a representation theorem
[43], and every ranked interpretation, R, generates a corresponding defeasible
entailment relation �≈R that satisfies all the KLM properties such that for some
knowledge base K for which R � K then K �≈R ↵ �∼ � if and only R � ↵ �∼ �.

As an example, given the propositional logic over the set of propositions
P = {p, q, r}, then the following is a possible ranked interpretation, R, of some
knowledge base K, where valuations are represented as propositions in typewriter
text, with a bar over a proposition indicating that it is not satisfied by the
valuation:

∞ pqr pqr
1 pqr pqr pqr
0 pqr pqr pqr

Then, by way of example, the above ranked interpretation forms a defeasible
entailment, �≈R, such that K �≈R p �∼ q and K �≈R q �∼ r.

3 Applications

3.1 Legal reasoning

Legal informatics formalizes laws and regulations such that artificial intelligence
and data driven techniques can be used to analyse legal systems [28,37,58]. In
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particular, much attention has been focused on modelling a set of laws and regu-
lations as a normative system: a set of ordered pairs of the form �condition, consequence�
[37]. One of the main formalisms for describing a normative system is input/output
logics [47], a logic that is built up of ordered pairs as the language. Defeasibil-
ity in input/output logics has not been widely studied, however there are other
logics used for reasoning about laws that have been enriched with defeasible
concepts.

One of the main languages that has been used to reason about laws and
regulations is deontic logic [37]. Deontic logic is a type of modal logic where the
modal operators, � and �, are interpreted as “it is obligatory”, or “it is per-
mitted” [64]. This, naturally, is a useful framework for analysing legal problems
that are concerned with the distinction between what is the case, and what
ought to be the case. There are two main varieties of deontic logic: standard
deontic logic (SDL), and dyadic standard deontic logic (DSDL) [33,58]. Stan-
dard deontic logic is made up statements of the form �(↵), and �(↵) with the
intended reading of “↵ is obligatory” and “↵ is permitted”, respectively. Dyadic
standard deontic logic, however, is more expressive by being able to also express
statements of the form �(↵��) and �(↵��) with the reading of “given � then ↵

is obligatory” and “given � then ↵ is permitted”, respectively. DSDL is therefore
useful for reasoning about scenarios where an agent has acted contrary-to-duty
[58], by allowing for reasoning about what ought to be the case even in the case
where another norm was violated, which implies a level of defeasibility already
baked into DSDL.

The legal domain is a great candidate for defeasible reasoning, as laws and
regulations are inherently defeasible. Grossi and Rotolo [37] identify three main
areas of defeasibility in the law:

1. Conflicts
2. Exclusionary norms
3. Contributory factors

Conflicts arise where two legal norms both apply and lead to contradictory con-
clusions. These conflicts can themselves be categorized into three di↵erent sce-
narios: [37]

1. One norm is an exception to the other. This is resolved by lex specialis which
gives priority to the more specific norm, the exception.

2. There exists a ranking between the norms, for example they could be from
di↵erent authorities. In this case the conflict can be resolved by lex superior
which gives priority to the higher ranked norm.

3. The norms could have been enacted at di↵erent times. In this case the prin-
ciple of lex posterior will resolve the conflict by giving priority to the norm
enacted most recently.

Exclusionary norms are legal norms that provide explicit conditions or meth-
ods to make other norms invalid, for example fulfilling criteria to make certain
evidence inapplicable.
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Contributory factors refer to the set of factors that help decide whether or not
a norm is applicable. This is a product of the di�culty of precisely describing
what criteria need to be met for some legal issue. For example, determining
whether the use of a copyrighted piece of work falls under fair use depends on a
number of loosely defined factors [37].

More generally, defeasibility is baked into the legal domain [37]. One possible
reason is that legality is driven by human cognition, which is inherently defeasible
[59]. Law is also a dialectical exercise where conclusions that may be heavily
supported by current norms may be rejected.

Given that the legal sphere inherently contains such defeasibility, it then
makes sense to use defeasible reasoning in legal informatics. Deontic logic en-
riched with defeasibility has been shown to solve well-known paradoxes [28],
which suggests that defeasibility can be successfully used to enhance reasoning
techniques.

3.2 Programming frameworks

Writing programs based on formal logic has been researched since the 1970s
[3,46]. Logic programs are a set of rules that form a theory that corresponds to a
knowledge base in a formal language, with the goal of computation rather than
theorem proving.

One of the earliest formalisms for logic programming, Datalog was originally
a database querying language, but has found far more general applicability [31].
Datalog syntax is reflective of database facts and schemas, and has been suc-
cessfully applied as a declarative programming language, with use in a variety
of fields.

Defeasible datalog [38,55] is an extension to disjunctive datalog [31] in which
the the KLM postulates [43] may be expressed. It has been shown [38,55] that
defeasible entailment relations may be algorithmically defined, and computed, in
defeasible datalog. Specifically, algorithms to compute the rational closure [43],
lexicographic closure [42], and relevant closure [22] of a defeasible knowledge
base given in an extended defeasible datalog was given by Morris et al. [55], while
a general defeasible reasoning system using datalog was defined by Harrison and
Meyer [38]. Both of the above were defined syntactically, as algorithms over the
statements in the knowledge bases themselves. A useful continuation of this work
would be provide semantic characterizations of defeasible entailment relations for
datalog, which would provide a platform for comparisons in other formalisms,
such as in description logics, and allow for importing work already done into
datalog.

Datalog itself has found applicability in artificial intelligence projects, specif-
ically DLV [44] and RDFox [57]. RDFox is a RDF data-store that supports
datalog reasoning services. Defeasible datalog implies that defeasible implemen-
tations of both RDFox and DLV are possible and worth investigation.

Another extension of datalog is that of datalog ± [20,21], an extension that
adds quantification to rule heads while restricting syntax in various ways to
improve the complexity. Of particular interest is the application of datalog ± to
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ontologies, as it is strictly more expressive than the description logic DL-Lite,
and the potential for datalog ± to be applied to RDF stores [21]. As a direct
result of these, datalog ± has the potential to be applied to the semantic web
and other RDF systems such as RDFox [57]. The significance of the above in the
context of this paper is the potential to therefore investigate enriching datalog ±
with defeasible concepts in the vein of Morris et al. [55] and Harrison and Meyer
[38]. Extending defeasible datalog to defeasible datalog ± is a natural theoretical
continuation that could yield interesting results.

Another logic programming framework that has close ties to defeasible rea-
soning is answer set programming (ASP) [9,45]. Built around the concept of
answer sets: consistent sets of formulas satisfying the constraints defined by the
program, ASP has found many applications, from robotics, to planning, and to
bioinformatics [32]. ASP has a fundamental link to defeasible reasoning, as an-
swer sets are essentially consistent extensions to a knowledge base, in much the
same way that default logic defines consistent extensions to default theories [9].
ASP programs are, in fact, fragments of default logic [60], and can also be rep-
resented as theories in nonmonotonic modal logics [50,51]. These features make
ASP a promising formalism in which to translate work done in nonmonotonic
logics, such as enriching ASP with object-level defeasibility.

4 Future work

4.1 Syntax Sensitivity

Syntactic entailment relations are defined by directly using the statements in a
knowledge base, contrasted with entailment relations generated from a seman-
tics. Syntactic methods introduce the property of syntax sensitivity. In short,
syntax sensitivity is the property that, given two classically logically equivalent
sets of statements that have di↵ering syntax, a defeasible entailment relation
will draw a particular inference from only one and not the other [7]. This
introduces unpredictability: given the same defeasible entailment relation and
logically equivalent, under classical semantics, knowledge bases, then the same
inferences would be expected to hold. Therefore, investigating the causes of syn-
tax sensitivity, and ways to avoid it is an interesting area of research.

Baral et al. [5] noted that defeasible reasoning can introduce syntactic sen-
sitivity. The prototypical example of syntax sensitive reasoning is the di↵erence
between the two knowledge bases: K ∶= {↵,�}, K′ ∶= {↵ ∧ �}. Both K and K′
are logically equivalent under classical semantics. However, there exists many
defeasible entailment relations �≈ such that K ∪ {¬↵} �≈ �, but K′ ∪ {¬↵} ��≈ �

[5,6]. There are possible explanations for this feature to be not undesirable: per-
haps ↵ and � are observations from di↵erent sources, whereas ↵ ∧ � is a single
observation. Such a reading of the knowledge base may actually validate syn-
tax sensitivity as a feature, not a bug - the form of the knowledge may be a
significant aspect of the reasoning.

Consider the following knowledge bases: K ∶= {Penguin ∧ ¬Bird �∼ �,Bird �∼
Flies,Bird �∼ Wings,Penguin �∼ ¬Flies} and K′ ∶= {Penguin∧¬Bird �∼ �,Bird �∼
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Flies ∧ Wings,Penguin �∼ ¬Flies}. Note that under classical semantics, the

materializations - defined as
�→K ∶= {↵ → � �↵ �∼ � ∈ K}, that is the set of classical

counterparts for every defeasible implication in a knowledge base - of K and K′
are logically equivalent, i.e. they are both satisfied by the same set of valuations.
Given the lexicographic closure [42] as the defeasible entailment relation, �≈LC ,
then it is the case that K �≈LC Penguin �∼ Wings and K′ ��≈LC Penguin �∼ Wings.
Therefore, the syntax of the knowledge base, while not having any e↵ect under
classical semantics, can change what a presumptive defeasible entailment relation
will or will not infer.

In the context of KLM-style defeasible reasoning, defeasible entailment rela-
tions have a syntactic definition [23]. The more presumptive a defeasible entail-
ment, the more syntactic sensitivity is introduced. This is an issue, as it places
a burden on the modelling process to represent the information in such a way
as to guarantee the correct inferences. Rather, having consistent behaviour for a
particular entailment relation would be more desirable for both implementation
and theoretical analysis of an entailment. Such a consistent entailment relation
is referred as syntax insensitive, and investigating how to ensure that defeasi-
ble syntactic entailments are syntax insensitive is an ongoing, significant area of
work.

Syntactic methods are very useful for defining algorithms to perform reason-
ing tasks, and as such this question has direct consequences on defining defeasible
reasoning for logic programming. Specifically, the algorithms presented by Morris
et al. [55] and Harrison and Meyer [38] use syntactic methods to define algo-
rithms in datalog for computing defeasible entailment relations. Defining syntax
insensitive entailment relations will therefore allow for various presumptive de-
feasible entailment relations that represent common-sense patterns of reasoning
relevant to many domains to be defined in an identical manner, and behave
reliably and predictably.

The primary research focuses suggested here for syntax sensitivity would
be: is syntax sensitivity a significant property of an entailment relation such
that it encodes a meaningful reading of the knowledge base, and is there a
corresponding syntax insensitive defeasible entailment for any syntax sensitive
defeasible entailment?

4.2 Explanation

Explanation in artificial intelligence is a growing area of interest [41], in part
because of the opacity of machine learning techniques. However, it is also well
established in logic based techniques [39], where the primary goal is to pro-
vide, for each inference, a justification: some minimal subset of the knowledge
base from which the inference follows. The goals of explainability in knowledge
representation are, broadly speaking, to understand entailments that are not
obviously inferred by the knowledge, to fix a possibly bugged, or inconsistent,
knowledge base, and to gain some better understanding of a knowledge base
with which the user may not have prior experience [39]. So far, the majority
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of work in explainable AI has been in the context of classical reasoning [41],
however there is foundational work on extending explainability to the realm of
defeasibility [10,27].

Given a classical propositional knowledge base K ∶= {Bird → Flies,Bird →
Wings,Penguin → Bird,Penguin → ¬Flies,Robin → Bird}, then any classical
reasoning engine will claim that K � Robin → Wings. A justification based ex-
planation system will be able to go further and produce a minimal subset of K
satisfying the inference, in this case the set [26]:

– Robin → Bird
– Bird → Wings

The above example may be simple, but for knowledge bases on the scale of tens
or hundreds of thousands of statements, finding the reasoning behind a given
entailment without an explanation engine, can be an excruciating task, if at all
feasible [39].

In the context of a defeasible logic, the task of explanation is complicated
by the inherent nonmonotonicity: a subset of a defeasible knowledge base may
well entail an inference that the whole knowledge base does not. As yet, there
is only preliminary work in explanation for defeasible reasoning [10,27], and so
therefore it is ripe area for research.

An important aspect to consider for explanation is providing useful justifica-
tions in a natural language that considers the intended users [53]. Miller [53]
provides a selection of features for a useful, or successful, explanation. Comput-
ing justifications for a defeasible inference should take such features into account,
as the defeasible nature of an inference can prove both a significant aspect that
is worth conveying to the users, while also being challenging to accurately con-
vey. The di↵erence between an inference that is actually classical (and therefore
will not be retracted) and an inference that is defeasible, and so is a specula-
tive entailment, may well be important information to deal with in a defeasible
explanation engine.

Some key areas of research for defeasible explanation are: implementing and
generalizing the work of Chama [26], and comparable work for defeasible logic
programming formalisms. Chama [26] provided an algorithm for computing jus-
tifications for inferences in the rational closure of a defeasible knowledge base
[43], and so a natural follow up would be implementing the algorithm in question
in an application. Furthermore, the algorithm in question is designed for justifi-
cations of inferences entailed by the rational closure, and so an important project
would either be generalizing the algorithm to function for any defeasible entail-
ment, or at least for other specific defeasible entailments such as lexicographic
closure [42].

4.3 Expressive logics

The KLM framework was first described using a propositional language [40,43],
but there has been much work in implementing KLM-style connectives and se-
mantics to modal logics [17,19] and description logics [11,12,14,15,16,18,24,25,35].
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Importing nonmonotonic formalisms into more expressive logics is a natural pro-
gression of such work, as defeasibility is a di↵erent axis of expressivity on which
to enrich description logics and modal logics.

Description logics [4] have a correspondence to the Web Ontology Language
(OWL) [18,56] which is used to build various ontologies, such as the Gene
Ontology [29], and is also the language that defines the semantic web [8,36].
Therefore, progress made introducing defeasibility in description logics has a di-
rect path to enriching the semantic web with defeasible, common-sense patterns
of reasoning, along with ontologies used to compile domain knowledge in general.

While defeasible TBox statements in description logics have been defined with
respect to representation and semantics [13,15], an ongoing area of research is
that of defeasible ABox reasoning [11,14]. While reasoning with a classical ABox
has been defined [11], defining reasoning with respect to a defeasible ABox is
an open question [12,35]. Additionally, there is also the opportunity to compile
the various ways KLM-style defeasibility has been incorporated in description
logics and provide an overview paper.

Investigating defeasible modal logics [16,17,19] has relevance to legal rea-
soning. As stated in section 3.1, the legal domain contains inherent defeasibility
when modelling laws and regulations as they are presented. Since deontic logic
is a major language for modelling the legal domain, it seems intuitive that a
defeasible deontic logic is worth exploring for its ability to resolve at least some
conflicts that arise between factual and normative detachment [28,58]. Some
primary research areas for defeasible modal logics include investigating non-
monotonic entailment relations and enriching various specific modal logics with
defeasibility [19].

5 Conclusion

This paper is intended to be an overview of the various open sub-fields and re-
search questions regarding the KLM framework for defeasible reasoning. Primary
theoretical sub-fields covered are: syntax sensitivity, explanation, and theoreti-
cal advancements for more expressive languages such as description and modal
logics, with the view towards applications such as legal informatics, and logic
programming projects such as RDFox and DLV, and the semantic web.

Work in syntax sensitivity has applications in logic programming projects, as
they allow for syntactic formulations of defeasible reasoning to be implemented,
with expected behaviours. Explanation has applications in any implementation
of defeasible reasoning, by providing justifications for inferences allowing for
understanding entailments and repairing defeasible knowledge bases. Defeasible
reasoning for description logics has many possible applications, the most obvious
being to enrich OWL with defeasibility, which has impact on many projects,
including the semantic web. Similarly, defeasible modal logics is an impactful
field of work, one application of many would be in legal informatics: enriching
deontic logic with defeasibility to resolve well-known paradoxes.
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