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The past 25 years have seen many attempts to introduce defeasible-reasoning capabilities into a description

logic setting. Many, if not most, of these attempts are based on preferential extensions of description logics,

with a significant number of these, in turn, following the so-called KLM approach to defeasible reasoning

initially advocated for propositional logic by Kraus, Lehmann, and Magidor. Each of these attempts has its

own aim of investigating particular constructions and variants of the (KLM-style) preferential approach. Here

our aim is to provide a comprehensive study of the formal foundations of preferential defeasible reasoning

for description logics in the KLM tradition.

We start by investigating a notion of defeasible subsumption in the spirit of defeasible conditionals as studied

by Kraus, Lehmann, and Magidor in the propositional case. In particular, we consider a natural and intuitive

semantics for defeasible subsumption, and we investigate KLM-style syntactic properties for both preferen-

tial and rational subsumption. Our contribution includes two representation results linking our semantic

constructions to the set of preferential and rational properties considered. Besides showing that our seman-

tics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning

in description logics. Indeed, we also analyse the problem of non-monotonic reasoning in description logics

at the level of entailment and present an algorithm for the computation of rational closure of a defeasible

knowledge base. Importantly, our algorithm relies completely on classical entailment and shows that the

computational complexity of reasoning over defeasible knowledge bases is no worse than that of reasoning

in the underlying classical DL ALC.
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1 INTRODUCTION

Description logics (DLs) [1] are central to many modern AI and database applications, since they
provide the logical foundation of formal ontologies. Yet, as classical formalisms, DLs do not allow
for the proper representation of and reasoning with defeasible information, as shown up in the
following example, adapted from Giordano et al. [54]: Students do not get tax invoices; employed
students do; employed students who are also parents do not. From a naïve (classical) formalisation
of this scenario, one concludes that the notion of employed student is an oxymoron, and, conse-
quently, the concept of employed student is unsatisfiable. But while concept unsatisfiability has
been investigated extensively in ontology debugging and repair [72, 83], our research problem
here goes beyond that, as will become clear in the upcoming sections.

Endowing DLs with defeasible reasoning features is therefore a promising endeavour from the
point of view of applications of knowledge representation and reasoning. Indeed, the past 25 years
have witnessed many attempts to introduce defeasible-reasoning capabilities in a DL setting, draw-
ing on a well-established body of research on non-monotonic reasoning (NMR). These comprise
the so-called preferential approaches [27, 28, 30, 45, 48, 54, 55, 59, 60, 77, 78], circumscription-based
ones [9, 10, 84], amongst others [2, 3, 8, 51, 64–66, 73, 76, 86].

Preferential extensions of DLs turn out to be particularly promising, mainly because they are
based on an elegant, comprehensive, and well-studied framework for non-monotonic reasoning
in the propositional case proposed by Kraus, Lehmann, and Magidor [67, 70] and often referred to
as the KLM approach. Such a framework is valuable for a number of reasons. First, it provides for
a thorough analysis of some formal properties that any consequence relation deemed as appro-
priate in a non-monotonic setting ought to satisfy. Such formal properties, which resemble those
of a Gentzen-style proof system (see Section 3.1), play a central role in assessing how intuitive
the obtained results are and enable a more comprehensive characterisation of the introduced non-
monotonic conditional from a logical point of view. Second, the KLM approach allows for many de-
cision problems to be reduced to classical entailment checking, sometimes without blowing up the
computational complexity compared to the underlying classical case. Finally, it has a well-known
connection with the AGM-approach to belief revision [53, 81] and with frameworks for reasoning
under uncertainty [7, 52]. It is therefore reasonable to expect that most, if not all, of the aforemen-
tioned features of the KLM approach should transfer to KLM-based extensions of DLs, too.

Following the motivation laid out above, several extensions to the KLM approach to description
logics have been proposed recently [27, 30, 33, 35, 38, 39, 45, 48, 54, 55, 59, 60, 74, 87], each of them
investigating particular constructions and variants of the preferential approach. However, here
our aim is to provide a comprehensive study of the formal foundations of preferential defeasible
reasoning in DLs. By that, we mean (i) defining a general and intuitive semantics; (ii) showing that
the corresponding representation results (in the KLM sense of the term) hold, linking our semantic
constructions with the KLM-style set of properties; and (iii) presenting an appropriate analysis of
entailment in the context of ontologies with defeasible information with an associated decision
procedure that is implementable.

In the remainder of the article, we shall take the following route: After providing the required
background on the DL, we consider in this work as well as fixing the notation (Section 2), we
introduce the notion of defeasible subsumption along with a set of KLM-inspired properties it
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ought to satisfy (Section 3). In particular, using an intuitive semantics for the idea that “usually,
an element of the class C is also an element of the class D”, we provide a characterisation (via
representation results) of two important classes of defeasible statements, namely, preferential and
rational subsumption. In Section 4, we start by investigating two obvious candidates for the notion
of entailment in the context of defeasible DLs, namely, preferential and modular entailment. These
turn out not to have all properties seen as important in a non-monotonic DL setting, mimicking a
similar result in the propositional case [70]. Therefore, we propose a notion of rational entailment
and show that it is the definition of consequence we are looking for. We take this definition further
by exploring the relationship that rational entailment has with both Lehmann and Magidor’s [70]
definition of rational closure and the more recent algorithm by Casini and Straccia [45] for its
computation (Section 5). After a discussion of, and comparison with, related work (Section 6), we
conclude with a summary of our contributions and some directions for further exploration. Proofs
of our results can be found in the Appendix. Most of the results we present here have already been
published in two technical reports [23, 24], and already cited and used in other publications (see
Section 6). This article offers an expanded and more comprehensive presentation.

2 LOGICAL PRELIMINARIES

DLs [1] are decidable fragments of first-order logic with interesting properties and a variety of
applications. There is a whole family of description logics, an example of which is ALC and on
which we shall focus in the present article.1

The (concept) language ofALC is built upon a finite set of atomic concept names C, a finite set of
role names R (a.k.a. attributes) and a finite set of individual names I such that C, R and I are pairwise
disjoint. In our scenario example, we can have for instance C = {Employee,Company, Student,
EmpStud,Parent, Tax}, R = {pays, empBy,worksFor}, and I = {john, ibm,mary}, with the respec-
tive obvious intuitions. With A,B, . . ., we denote atomic concepts, with r , s, . . . role names, and
with a,b, . . . individual names. Complex concepts are denoted with C,D, . . . and are built using
the constructors ¬ (complement), � (concept conjunction), � (concept disjunction), ∀ (value re-
striction) and ∃ (existential restriction) according to the following grammar rules:

C ::= � | ⊥ | C | (¬C ) | (C �C ) | (C �C ) | (∃r .C ) | (∀r .C )

With L, we denote the language of all ALC concepts, which is understood as the smallest set
of symbol sequences generated according to the rules above. When writing down concepts of L,
we follow the usual convention and omit parentheses whenever they are not essential for disam-
biguation. Examples of ALC concepts in our scenario are Student � Employee and ¬∃pays.Tax.

The semantics of ALC is the standard set-theoretic Tarskian semantics. An interpretation

is a structure I =def 〈ΔI , ·I〉, where ΔI is a non-empty set called the domain, and ·I is an
interpretation function mapping concept names A to subsets AI of ΔI , role names r to binary
relations r I over ΔI , and individual names a to elements of the domain ΔI , i.e., AI ⊆ ΔI ,
r I ⊆ ΔI × ΔI , and aI ∈ ΔI .

Figure 1 depicts an interpretation for our scenario example with domain ΔI = {xi | 0 ≤ i ≤
10}, and interpreting the elements of the vocabulary as follows: EmployeeI = {x1,x2,x5,x9},
CompanyI = {x6,x10}, StudentI = {x1,x5,x7,x8}, EmpStudI = {x1,x5}, ParentI = {x1,x2,x3},
TaxI = {x4}, paysI = {(x1,x0), (x5,x4)}, empByI = {(x9,x10)}, worksForI = {(x5,x6), (x9,x10)},
johnI = x5, ibmI = x6, maryI = x2.

1For the reader not conversant with Description Logics but familiar with modal logics, there are results in the literature

relating some families of description logics to systems of modal logic. For example, a well-known result is the one linking

the DL ALC with the normal modal logic K [82].
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Fig. 1. A DL interpretation.

Let I = 〈ΔI , ·I〉 be an interpretation and define r I (x ) =def {y ∈ ΔI | (x ,y) ∈ r I}, for r ∈ R. We
extend the interpretation function ·I to interpret complex concepts of L as follows:

�I =def ΔI ;

⊥I =def ∅;

(¬C )I =def ΔI \CI ;

(C � D)I =def C
I ∩ DI ;

(C � D)I =def C
I ∪ DI ;

(∃r .C )I =def {x ∈ ΔI | r I (x ) ∩CI � ∅};

(∀r .C )I =def {x ∈ ΔI | r I (x ) ⊆ CI}.

For the interpretation I in Figure 1, we have (Parent � Employee)I = {x1,x2} and
(∃pays.Tax)I = {x5}.

Given C,D ∈ L, a statement of the form C � D is called a subsumption statement, or general

concept inclusion (GCI), read “C is subsumed by D”. A concrete example of GCI is EmpStud �
Student � Employee. C ≡ D is an abbreviation for both C � D and D � C . An ALC TBox T is
a finite set of GCIs. Given C ∈ L, r ∈ R and a,b ∈ I, an assertional statement (assertion, for short)
is an expression of the form a : C or (a,b) : r , read, respectively, “a is an instance of C” and “a
is related to b via r”. Examples of assertions are john : EmpStud and (john, ibm) : worksFor. An
ALC ABoxA is a finite set of assertional statements. We denote statements withα , β, . . .. GivenT
andA, withKB =def T ∪ A, we denote anALC knowledge base, a.k.a., an ontology, an example
of which follows:

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

EmpStud � Student � Employee,

Student � ¬∃pays.Tax,

EmpStud � ∃pays.Tax,

EmpStud � Parent � ¬∃pays.Tax,

Employee � ∃worksFor.Company

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

,

A = {john : EmpStud, john : Parent, (john, ibm) : worksFor}.
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An interpretation I satisfies a GCIC � D (denoted I � C � D) ifCI ⊆ DI . (And then I � C ≡
D if CI = DI .) I satisfies an assertion a : C (respectively, (a,b) : r ), denoted I � a : C (respec-
tively, I � (a,b) : r ), if aI ∈ CI (respectively, (aI ,bI ) ∈ r I ).

In the interpretation I in Figure 1, we have I � EmpStud � Student � Employee and I �
john : ∃pays.Tax, but we do not have I � (john, ibm) : empBy.

We say that an interpretation I is a model of a TBox T (respectively, of an ABox A), denoted
I � T (respectively, I � A) if I � α for every α in T (respectively, in A). We say that I is a
model of a knowledge base KB = T ∪ A if I � T and I � A. It can be verified that the inter-
pretation in Figure 1 is not a model of the example knowledge base above. (Actually, it is not hard
to see that the knowledge base above admits no model.)

A statement α is (classically) entailed by a knowledge base KB, denoted KB |= α , if every
model of KB satisfies α . If I � α for all interpretations I, then we say α is a validity and denote
this fact with |= α .

The focus of the present article being on defeasibility for description logic TBoxes only, we
henceforth assume the ABox is empty. (We are currently in the process of extending our approach
to description logic knowledge bases, with ABoxes included into the mix.) It is easy to see that,
for T as above, we have T |= EmpStud � ⊥.

For more details on Description Logics in general and on ALC in particular, the reader is in-
vited to consult the Description Logic Handbook [1] and the introductory textbook on Description
Logic [4].

3 FOUNDATIONS FOR DEFEASIBILITY IN DLS

In this section, we lay the formal foundations of our approach to defeasible reasoning in DL on-
tologies. For the most part, we build on the so-called preferential approach to non-monotonic
reasoning [67, 70, 85].

3.1 Defeasible Subsumption Relations and their KLM-style Properties

In a sense, class subsumption (alias concept inclusion) of the formC � D is the main notion in DL
ontologies. Given its implication-like intuition, subsumption lends itself naturally to defeasibility:
“provisionally, if an object falls underC , then it also falls under D”, as in “usually, students are tax
exempted”. In that respect, a defeasible version of concept inclusion is the starting point for an
investigation of defeasible reasoning in DL ontologies. (We shall also address defeasibility of the
entailment relation in later sections.)

Definition 1 (Defeasible Concept Inclusion). Let C,D ∈ L. A defeasible concept inclusion axiom
(DCI, for short) is a statement of the form C �∼ D.

A defeasible concept inclusion of the form C �∼ D is to be read as “usually, an instance of the
class C is also an instance of the class D”. For instance, the DCI Student �∼ ¬∃pays.Tax formalises
the example above. Paraphrasing Lehmann [68], the intuition ofC �∼ D is that “if [the fact it belongs
to]C were all the information about an object available to an agent, then [that it also belongs to] D
would be a sensible conclusion to draw about such an object”. It is worth noting that �∼ , just as �,
is a “connective” sitting between the concept language (object level) and the meta-language (that
of entailment) and it is meant to be the defeasible counterpart of the classical subsumption �.

Being (defeasible) statements, DCIs will also be denoted by α , β, . . . Whenever a distinction
between GCIs and DCIs is in order, we shall make it explicitly.

Definition 2 (Defeasible TBox). A defeasible TBox (DTBox, for short) is a finite set of DCIs.

ACM Transactions on Computational Logic, Vol. 22, No. 1, Article 1. Publication date: November 2020.
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Given a TBoxT and a DTBoxD, we letKB =def T ∪ D and refer to it as a defeasible knowledge

base (alias defeasible ontology).

Example 1. The following defeasible knowledge base gives a formal specification for our student
scenario:

T = {EmpStud � Student},

D =
⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

Student �∼ ¬∃pays.Tax,

EmpStud �∼ ∃pays.Tax,

EmpStud � Parent �∼ ¬∃pays.Tax

⎫⎪⎪⎪⎬
⎪⎪⎪
⎭

.

In our semantic construction later on in Section 4.1, it will also be useful to be able to refer to
infinite sets of concept inclusions. LetK therefore denote a defeasible theory, defined as a defeasible
knowledge base but without the restriction on T and D to finite sets.

To assess the behaviour of the new connective and check it against both the intuition and the
set of properties usually considered in a non-monotonic setting, it is convenient to look at a set of
�∼ -statements as a binary relation of the “antecedent-consequent” kind.

Definition 3 (Defeasible Subsumption Relation). A defeasible subsumption relation is a binary
relation �∼ ⊆ L × L.

The idea is to mimic the analysis of defeasible entailment relations carried out by Kraus et al. [67]
in the propositional case, where entailment is seen as a binary relation on the set of propositional
sentences. Here, we shall adopt the view of subsumption as a binary relation on concepts of our
description language.

Sometimes (e.g., in the structural properties below), we shall write (C,D) ∈ �∼ in the infix no-
tation, i.e., as C �∼ D. The context will make clear when we will be talking about elements of a
relation or statements (DCIs) in a defeasible knowledge base. Whenever disambiguation is in or-
der, we shall flag it to the reader.

Definition 4 (Preferential Subsumption Relation). A defeasible subsumption relation �∼ is a pref-

erential subsumption relation if it satisfies the following set of properties, which we refer to as
the (DL versions of the) preferential KLM properties:

(Cons) � ��∼ ⊥, (Ref) C �∼C, (LLE)
C ≡ D, C �∼ E

D �∼ E
,

(And)
C �∼ D, C �∼ E
C �∼ D � E

, (Or)
C �∼ E, D �∼ E
C � D �∼ E

, (RW)
C �∼ D, D � E

C �∼ E
,

(CM)
C �∼ D, C �∼ E
C � D �∼ E

.

The (Cons) property is a consequence of the adoption of a DL-based semantics, which enforces
the non-emptiness of the domain, as will become clear in the next section. The rest of the properties
in Definition 4 result from a translation of the properties for preferential consequence relations
proposed by Kraus et al. [67] in the propositional setting. They have been discussed at length in
the literature for both the propositional and the DL cases [27, 30, 56, 57, 67, 70], and we shall not
repeat so here.
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If, in addition to the preferential properties above, the relation �∼ also satisfies rational mono-
tonicity (RM) below, then it is said to be a rational subsumption relation:

(RM)
C �∼ D, C ��∼ ¬E
C � E �∼ D

.

Rational monotonicity is often considered a desirable property to have, one of the reasons stem-
ming from the fact it is a necessary condition for the satisfaction of the principle of presumption

of typicality [69, Section 3.1]. Such a principle is a simple yet intuitive formalisation of a form of
reasoning we carry out when facing lack of information: We reason assuming that we are in the
most typical possible situation, compatible with the information at our disposal. (More details will
be provided in Section 4).

3.2 Preferential Semantics and Representation Results

In this section, we present our semantics for preferential and rational subsumption by enriching
standard DL interpretations I with an ordering on the elements of the domain ΔI . The intuition
underlying this is simple and natural, and extends similar work done for the propositional case
by Shoham [85], Kraus et al. [67], Lehmann and Magidor [70], and Booth et al. [13–16] to the
case for description logics. This is not the first extension of this kind, as evidenced by the work of
Boutilier [18], Baltag and Smets [5, 6], Giordano et al. [54, 56–60], Britz et al. [25–28, 30], and Britz
and Varzinczak [32, 33, 35–38]. However, this is the first comprehensive semantic account of both
preferential and rational subsumption relations, with accompanying representation results, based
on the standard semantics for description logics.

Informally, our semantic constructions are based on the idea that objects of the domain can
be ordered according to their degree of normality [18] or typicality [15, 16, 28, 54]. Paraphrasing
Boutilier [18, pp. 110–116],

Surely, there is no inherent property of objects that allows them to be judged to
be more or less normal in absolute terms. These orderings are purely “subjective”
(in the sense that they can be thought of as part of an agent’s belief state) and
the space of orderings deemed plausible by the agent may (among other things)
be determined by, e.g., empirical data. By using orderings in this way, we encode
our (or the agent’s) expectations about the objects corresponding to their perceived
regularity or typicality. Those objects not violating our expectations are considered
to be more normal than the objects that violate some.

Hence, we do not require that there exists something intrinsic about objects that makes one
object more normal than another. Rather, the intention is to provide a framework in which to
express all conceivable ways in which objects, with their associated properties and relationships
with other objects, can be ordered in terms of typicality, in the same way that the class of all
standard DL interpretations constitute a framework representing all conceivable ways of repre-
senting the properties of objects and their relationships with other objects. Just as the latter are
constrained by stating subsumption statements in a knowledge base, the possible orderings that
are considered plausible are encoded by writing down DCIs.

That said, we are ready for the definition of the first semantic construction the present work
relies on.

Definition 5 (Preferential Interpretation). A preferential interpretation is a tuple P =def

〈ΔP , ·P ,≺P〉, where 〈ΔP , ·P〉 is a (standard) DL interpretation (which we denote by IP and re-
fer to as the classical interpretation associated with P), and ≺P is a strict partial order on ΔP (i.e.,
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Fig. 2. A preferential interpretation.

≺P is irreflexive and transitive) satisfying the smoothness condition (for every C ∈ L, if CP � ∅,
then min≺P C

P � ∅).2

A first version of this definition was first proposed by Giordano et al. [54], and was followed
shortly thereafter by a similar definition, courtesy of Britz et al. [27].

Figure 2 depicts a preferential interpretation in our scenario example where ΔP and ·P
are as in the interpretation I shown in Figure 1, and ≺P= {(x7,x5), (x8,x5), (x9,x5), (x5,x1),
(x7,x1), (x8,x1), (x9,x1), (x9,x2), (x10,x6)}, represented by the dashed arrows in the picture. (For
the sake of presentation, in the picture we omit the transitive ≺P-arrows.)

Preferential interpretations provide us with a simple and intuitive way to give a semantics to
DCIs.

Definition 6 (Satisfaction). Let P be a preferential interpretation, C,D ∈ L, r ∈ R and a,b ∈ I.
The satisfaction relation � is defined as follows:

• P � C � D if CP ⊆ DP ;
• P � C �∼ D if min≺P C

P ⊆ DP .

If P � α , then we say P satisfies α . P satisfies a defeasible knowledge base KB, written P �
KB, if P � α for every α ∈ KB, in which case we say P is a preferential model of KB. We
say C ∈ L is satisfiable w.r.t. KB if there is a model P of KB s.t. CP � ∅.

The semantics proposed above was suggested by Giordano et al. [54] in their definition of a
typicality operator, and by Britz et al. [27] as above. The intuition underlying the definition of
satisfaction forC �∼ D above should be clear. It states that, in the most general case, any instance of
C should also be an instance of D. It is, of course, possible to consider other definitions of C �∼ D,
such as that all typical instances ofC should be typical instances of D. However, our definition can
be justified by pointing out that it is a version of the definition for defeasible consequence (denoted
by |∼) by Kraus et al. [67], adjusted to apply to defeasible inclusion for description logics. The
origins of the definition of |∼ can be traced back to the work of Shoham [85] and is a cornerstone
of the preferential approach to defeasible reasoning.

It is easy to see that the addition of the ≺P-component preserves the truth of all classical sub-
sumption statements holding in the remaining structure:

2Given X ⊆ ΔP , with min≺P X , we denote the set {x ∈ X | for every y ∈ X , (y, x ) �≺P }.

ACM Transactions on Computational Logic, Vol. 22, No. 1, Article 1. Publication date: November 2020.



Principles of KLM-style Defeasible Description Logics 1:9

Lemma 1. Let P be a preferential interpretation. For every C,D ∈ L, P � C � D if and only if

IP � C � D.

It is worth noting that, due to smoothness of ≺P , every (classical) subsumption statement is
equivalent, with respect to preferential interpretations, to some DCI.

Lemma 2. For every preferential interpretation P, and every C,D ∈ L, P � C � D if and only if

P � C � ¬D �∼ ⊥.

The following result, of which the proof can be found in Appendix A, will come in handy later
on.

Lemma 3. Preferential interpretations are closed under disjoint union.

An obvious question that can now be raised is: “How do we know our preferential semantics
provides an appropriate meaning to the notion of defeasible concept inclusion?” The following
definition will help us in answering this question:

Definition 7 (P-Induced Defeasible Subsumption). Let P be a preferential interpretation. Then
�∼ P =def {(C,D) | P � C �∼ D} is the defeasible subsumption relation induced by P.

The first important result we present here, which also answers the above raised question, shows
that there is a full correspondence between the class of preferential subsumption relations and
the class of defeasible subsumption relations induced by preferential interpretations. It is the DL
analogue of a representation result proved by Kraus et al. for the propositional case [67, Theorem 3]
and its proof can be found in Appendix B.

Theorem 1 (Representation Result for Preferential Subsumption). A defeasible subsump-

tion relation �∼ ⊆ L × L is preferential if and only if there is a preferential interpretation P such

that �∼ P = �∼ .

What is perhaps surprising about this result is that no additional properties based on the syn-
tactic structure of the underlying DL are necessary to characterise the defeasible subsumption
relations induced by preferential interpretations. We provide below a few properties involving the
use of quantifiers that are satisfied by all preferential subsumption relations. (See Section 5 for
more on properties explicitly mentioning DL-specific constructs.)

The first two are “existential” and “universal” versions of cautious monotonicity (CM):

(CM∃)
∃r .C �∼ E, ∃r .C �∼ ∀r .D
∃r .(C � D) �∼ E

,

(CM∀)
∀r .C �∼ E, ∀r .C �∼ ∀r .D
∀r .(C � D) �∼ E

.

The third one is a rephrasing of the Rule of Necessitation in modal logic [50]. It guarantees the
absence of so-called spurious objects [31] in the original preferential semantics for DLs by Britz et
al. [29, 30]. That is, if C is unsatisfiable, then so is ∃r .C (cf. Lemma 2):

(Norm)
C �∼ ⊥
∃r .C �∼ ⊥

.

In addition to preferential interpretations, we are also interested in the study of modular inter-
pretations, which are preferential interpretations in which the ≺-component is a modular ordering:

Definition 8 (Modular Order). Given a set X , ≺ ⊆ X × X is modular if it is a strict partial or-
der, and its associated incomparability relation ∼, defined by x ∼ y if neither x ≺ y nor y ≺ x , is
transitive.

ACM Transactions on Computational Logic, Vol. 22, No. 1, Article 1. Publication date: November 2020.



1:10 K. Britz et al.

If ≺ is modular, then ∼ is an equivalence relation.

Definition 9 (Modular Interpretation). A modular interpretation is a preferential interpreta-
tion R = 〈ΔR , ·R ,≺R〉 such that ≺R is modular.

Modular interpretations (albeit under the name ranked interpretations) were first inroduced by
Britz et al. [27]. Intuitively, modular interpretations allow us to compare any two objects w.r.t.
their plausibility. Those that are incomparable are viewed as being equally plausible. As such,
modular interpretations are special cases of preferential interpretations, where plausibility can be
represented by any smooth strict partial order.

The main reason to consider modular interpretations is that they provide the semantic founda-
tion of rational subsumption relations. This is made precise by our second important result below,
which shows that the defeasible subsumption relations induced by modular interpretations are
precisely the rational subsumption relations. Again, this is the DL analogue of a representation
result proved by Lehmann and Magidor for the propositional case [70, Theorem 5] and its proof
can be found in Appendix C.

Theorem 2 (Representation Result for Rational Subsumption). A defeasible subsumption

relation �∼ ⊆ L × L is rational if and only if there is a modular interpretationR such that �∼ R = �∼ .

Analogous to the case for cautious monotonicity above, the following “existential” and “univer-
sal” versions of rational monotonicity are satisfied by all rational subsumption relations:

(RM∃)
∃r .C �∼ E, ∃r .C ��∼ ∀r .¬D
∃r .(C � D) �∼ E

,

(RM∀)
∀r .C �∼ E, ∀r .C ��∼ ∀r .¬D
∀r .(C � D) �∼ E

.

It is worth pausing for a moment to emphasise the significance of these two results (Theorems 1
and 2). They provide exact semantic characterisations of two important classes of defeasible sub-
sumption relations, namely, preferential and rational subsumption, in terms of the classes of pref-
erential and modular interpretations, respectively. As we shall see in Section 4, these results form
the core of the investigation into an appropriate notion of entailment for defeasible DL ontologies.

4 RATIONALITY IN ENTAILMENT

From the standpoint of knowledge representation and reasoning, a pivotal question is that of de-
ciding which statements are entailed by a knowledge base. We shall devote the remainder of the
article to this matter, and in this section we lay out the formal foundations for that.

4.1 Preferential Entailment

In the exploration of a notion of entailment for defeasible ontologies, an obvious starting point is
to consider a Tarskian definition of consequence:

Definition 10 (Preferential Entailment). A statement α is preferentially entailed by a defeasible
knowledge base KB, written KB |=pref α , if every preferential model of KB satisfies α .

As usual, this form of entailment is accompanied by a corresponding notion of closure.

Definition 11 (Preferential Closure). Let KB be a defeasible knowledge base. With KB∗pref =def

{α | K B |=pref α }, we denote the preferential closure of KB.

The terms “preferential entailment” and “preferential closure” were first applied by Lehmann
and Magidor in the propositional context [70]. Intuitively, the preferential closure of a defeasi-
ble knowledge base KB corresponds to the “core” set of statements, classical and defeasible, that
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should hold given those in KB. Hence, preferential entailment and preferential closure are two
sides of the same coin, mimicking an analogous result for preferential reasoning in the proposi-
tional [67] case.

Recall (cf. the discussion following Definition 2) that a defeasible theoryK is a defeasible knowl-
edge base without the restriction to finite sets. When assessing how appropriate a notion of en-
tailment for defeasible ontologies is, the following definitions turn out to be useful, as will become
clear in the sequel:

Definition 12 (K -Induced Defeasible Subsumption). Let K be a defeasible theory. Then
(1)DK =def {C �∼ D | C �∼ D ∈ K } ∪ {C � ¬D �∼ ⊥ | C � D ∈ K } is the DTBox induced byK and
(2) �∼ K =def {(C,D) | C �∼ D ∈ DK } is the defeasible subsumption relation induced by K .

To see whyC � ¬D �∼ ⊥ is an appropriate representation ofC � D in the definition above, recall
from Lemma 2 thatC � ¬D �∼ ⊥ is equivalent toC � D on the level of preferential interpretations.

So, the DTBox induced by K is the set of defeasible subsumption statements contained in K ,
together with the defeasible versions of the classical subsumption statements inK . The defeasible
subsumption relation induced by K is simply the defeasible subsumption relation corresponding
to DK .

Definition 13. A defeasible theoryK is called preferential if the subsumption relation induced
by it satisfies the preferential properties in Definition 4.

It turns out that the defeasible subsumption relation induced by the preferential closure of a
defeasible knowledge baseKB is exactly the intersection of the defeasible subsumption relations
induced by the preferential defeasible theories containing KB.

Lemma 4. Lemma Let KB be a defeasible knowledge base. Then,

�∼ K B∗pref
=
⋂
{ �∼ K | KB ⊆ K and K is preferential}.

It follows immediately that the preferential closure of a defeasible knowledge baseKB is pref-
erential, and induces the smallest defeasible subsumption relation induced by a preferential defea-
sible theory containing KB.

Preferential entailment is not always desirable, one of the reasons being that it is monotonic,
courtesy of the Tarskian notion of consequence it relies on (see Definition 10). In most cases, as
witnessed by the great deal of work in the non-monotonic reasoning community, a move towards
rationality is in order. Thanks to the definitions above and the result in Theorem 2, we already
know where to start looking for it.

Definition 14 (Modular Entailment). A statement α is modularly entailed by a defeasible
knowledge base KB, written KB |=mod α , if every modular model of KB satisfies α .

As is the case for preferential entailment, modular entailment is accompanied by a correspond-
ing notion of closure.

Definition 15 (Modular Closure). Let KB be a defeasible knowledge base. With

KB∗mod =def {α | K B |=mod α },
we denote the modular closure of KB.

Definition 16. A defeasible theoryK is called rational if it is preferential and �∼ K is also closed
under the rational monotonicity rule (RM).

For modular closure, we get a result similar to Lemma 4.
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Lemma 5. Let KB be a defeasible knowledge base. Then,

�∼ K B∗mod
=
⋂
{ �∼ K | KB ⊆ K and K is rational}.

That is, the modular closure of a defeasible knowledge baseKB induces the smallest defeasible
subsumption relation induced by a rational defeasible theory containingKB. However, the modu-
lar closure of a defeasible knowledge baseKB is not necessarily rational. That is, if one looks at the
set of statements (in particular the �∼ -ones) modularly entailed by a knowledge base as a defeasi-
ble subsumption relation, then it need not satisfy the rational monotonicity property. Even worse,
modular entailment coincides with preferential entailment, as the following result, adapted from a
well-known similar result in the propositional case [70, Theorem 4.2], and originally adapted for
description logics by Giordano et al. [62], shows.

Lemma 6. KB∗mod = KB
∗
pref .

As a result, modular entailment unfortunately falls short of providing us with an appropriate
notion of non-monotonic entailment. To see why this result is problematic, note firstly that mod-
ular entailment is, by definition, a monotonic form of entailment. That is, once we have concluded
that an inclusion, whether classical or defeasible, is modularly entailed by a knowledge baseKB,
that inclusion cannot be retracted if additional statements are added to KB. This leads, interest-
ingly enough, to modular entailment being too conservative in terms of what can be entailed from
it, as the following example illustrates.

Example 2. Consider the following defeasible knowledge base:

T = {Penguin � Bird},

D = {Bird �∼ Flies,Bird �∼ HasWings}.
Modular entailment does not allow us to draw the reasonable conclusion that penguins usually (or
provisionally) have wings (Penguin �∼ HasWings). This is because, on subsequently learning that
penguins usually do not have wings (Penguin �∼ ¬HasWings) and adding that to our knowledge
base, the monotonicity of modular entailment would force us retain the conclusion that penguins
usually have wings (Penguin �∼ HasWings), in addition to our newfound knowledge that penguins
usually do not have wings. This, in turn, would allow us to conclude that there are not any penguins
(Penguin �∼ ⊥).

It is because of Lemma 6 and consequences such as those embodied in Example 2 that Lehmann
and Magidor insisted on the requirement that entailment w.r.t. defeasible knowledge bases be ratio-

nal in the sense of satisfying the rational monotonicity property [70]. This can rightly be regarded
as one of the basic tenets of this approach to entailment. In what follows, we address precisely this
issue.

4.2 Semantic Rational Entailment

In this section, we introduce a definition of semantic entailment, which, as we shall see, is appro-
priate in the light of the discussion above. The constructions we are going to present are inspired
by the semantic characterisation of rational closure by Booth and Paris [17] in the propositional
case. We shall give a corresponding proof-theoretic characterisation of our version of semantic
entailment in Section 5.1.

We focus our attention on a subclass of modular orders, referred to as ranked orders:

Definition 17 (Ranked Order). Given a set X , the binary relation ≺ ⊆ X × X is a ranked order

if there is a mapping hR : X −→ N satisfying the following convexity property:
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• for every i ∈ N , if for some x ∈ X hR (x ) = i , then, for every j such that 0 ≤ j < i , there is a
y ∈ X for which hR (y) = j,

and s.t. for every x ,y ∈ X , x ≺ y iff hR (x ) < hR (y).

It is easy to see that a ranked order ≺ is also modular: ≺ is a strict partial order, and, since two
objects x ,y are incomparable (i.e., x ∼ y) if and only if hR (x ) = hR (y), ∼ is a transitive relation. By
constraining our preference relations to the ranked orders, we can identify a subset of the modular
interpretations we refer to as the ranked interpretations.

Definition 18 (Ranked Interpretation). A ranked interpretation is a modular interpretationR =
〈ΔR , ·R ,≺R〉 s.t. ≺R is a ranked order.

We now provide two basic results about ranked interpretations. First, all finite modular inter-
pretations are ranked interpretations.

Lemma 7. A modular interpretation R = 〈ΔR , ·R ,≺R〉 s.t. ΔR is finite is a ranked interpretation.

Next, for every ranked interpretation R, the function hR (·) is unique.

Proposition 1. Given a ranked interpretation R = 〈ΔR , ·R ,≺R〉, there is only one function hR :
X −→ N satisfying the convexity property and s.t. for every x ,y ∈ X , x ≺ y iff hR (x ) < hR (y).

Proposition 1 allows us to use the function hR (·) to define the notions of height and layers.

Definition 19 (Height & Layers). Given a ranked interpretation R = 〈ΔR , ·R ,≺R〉, its character-
istic ranking function hR (·), and an object x ∈ ΔR , hR (x ) is called the height of x in R.

For every ranked interpretation R = 〈ΔR , ·R ,≺R〉, we can partition the domain ΔR into a se-
quence of layers (L0, . . . ,Ln , . . .), where, for every object x ∈ ΔR , we have x ∈ Li iff hR (x ) = i .

Intuitively, the lower the height of an object in an interpretation R, the more typical (or normal)
the object is in R. We can also think of a level of typicality for concepts: the height of a concept
C ∈ L in R is the index of the layer to which the restriction of the concept’s extension to its ≺R-
minimal elements belong, i.e., hR (C ) = i if ∅ ⊂ min≺R C

R ⊆ Li . As a convention, if min≺R C
R = ∅,

that is, if CR = ∅, then hR (C ) = ∞.
The following result (stated by Giordano et al. [60] as a consequence of their results, and proved

directly in Appendix D), will be useful for some of the proofs in later sections of the article:

Theorem 3 (Finite-Model Property). Defeasible ALC has the finite-model property. In par-

ticular, every defeasible ALC knowledge base that has a modular model, has also a finite-ranked

model.

Given a set of ranked interpretations, we can introduce a new form of model merging, ranked

union.

Definition 20 (Ranked Union). Given a countable set of ranked interpretations R = {R1,R2, . . .},
a ranked interpretation RR =def 〈ΔR, ·R,≺R〉 is the ranked union of R if the following holds:

• ΔR =def
∐
R∈R ΔR , i.e., the disjoint union of the domains from R, where each R ∈ R has

the elements x ,y, . . . of its domain renamed as xR , yR , . . . so that they are all distinct in ΔR;
• xR ∈ AR iff x ∈ AR ;
• (xR ,yR′ ) ∈ rR iff R = R′ and (x ,y) ∈ r R ;
• for every xR ∈ ΔR, hR (xR ) = hR (x ).
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The latter condition corresponds to imposing that xR ≺R yR′ iff hR (x ) < hR′ (y).

Informally, the ranked union of a set of ranked interpretations is the result of merging all their
layers of height i into a single layer of height i , for all i .

Lemma 8. Given a set of ranked models of a defeasible knowledge base KB, their ranked union is

itself a ranked model of KB.

Let KB be a defeasible knowledge base and let Δ be a fixed countably infinite set. Define

ModΔ(KB) =def {R = 〈ΔR , ·R ,≺R〉 | R � KB,R is ranked and ΔR = Δ}.
The following result shows that the set ModΔ(KB) suffices to characterise modular entailment
(the proof is in Appendix D):

Lemma 9. For every KB and every C,D ∈ L, KB |=mod C �∼ D iff R � C �∼ D, for every R ∈
ModΔ(KB).

Therefore, we can use just the set of interpretations in ModΔ(KB) to decide the consequences
of KB w.r.t. modular entailment.

We can now use the set ModΔ(KB) as a springboard to introduce what will turn out to be a
canonical modular interpretation forKB. Using ModΔ(KB) and ranked union, we can define the
following relevant model.

Definition 21 (Big Ranked Model). Let KB be a defeasible knowledge base. The big ranked

model of KB is the ranked model O =def 〈ΔO , ·O ,≺O〉 that is the ranked union of the models in
ModΔ(KB).

Given Lemma 8, we can state the following:

Corollary 1. O is a ranked model of KB.

Armed with the definitions and results above, we are now ready to provide an alternative defi-
nition of entailment in the context of defeasible ontologies:

Definition 22 (Rational Entailment). A statement α is rationally entailed by a knowledge
base KB, written KB |=rat α , if O � α .

Giordano and colleagues [60, 61] provide a different semantics in which some modular interpre-
tations are preferred over others. It has been shown that our definition corresponds to the main
semantic construction they propose [49, Proposition 30].

That our notion of entailment indeed deserves its name is witnessed by the following result, a
consequence of Corollary 1 and Theorem 2:

Corollary 2. Let KB be a defeasible knowledge base. {C �∼ D | O � C �∼ D} is rational.

In conclusion, rational entailment is a good candidate for the appropriate notion of defeasible
consequence we have been looking for. Of course, a question that arises is whether a notion of
closure, in the spirit of preferential and modular closures, that is equivalent to it can be defined.
In the next section, we address precisely this matter.

5 RATIONAL CLOSURE FOR DEFEASIBLE KNOWLEDGE BASES

We now turn our attention to the exploration, in a DL setting, of the well-known notion of rational

closure of a defeasible knowledge base as studied by Lehmann and Magidor [70] for propositional
logic. For the most part, we base our constructions on the work by Casini and Straccia [45, 48],
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amending it wherever necessary. As we shall see, rational closure provides a proof-theoretic char-
acterisation of rational entailment and the complexity of its computation is no higher than that
of computing entailment in the underlying classical DL. As mentioned in the previous section, an
alternative semantic characterisation of rational closure in DLs, one that is equivalent to ours, has
been proposed by Giordano et al. [60, 61]. They also define an alternative method for computing
rational closure [60, 62]. This is elaborated on in Section 6.

5.1 Rational Closure and a Correspondence Result

Rational closure is a form of inferential closure based on modular entailment |=mod, but it extends
its inferential power. Such an extension of modular entailment is obtained by formalising the al-
ready mentioned principle of presumption of typicality [69, Section 3.1]. That is, under possibly
incomplete information, we always assume that we are dealing with the most typical possible sit-
uation that is compatible with the information at our disposal. We first define what it means for a
concept to be exceptional, a notion that is central to the definition of rational closure:

Definition 23 (Exceptionality [[61]: Definition 10]). Let KB be a defeasible knowledge base and
C ∈ L. We say C is exceptional in KB if KB |=mod � �∼ ¬C . A DCI C �∼ D is exceptional in KB
if C is exceptional in KB.

A concept C is considered exceptional in a knowledge base KB if it is not possible to have a
modular model ofKB in which there is a typical object (i.e., an object at least as typical as all the
others) that is in the interpretation of C . This is expressed by requiring � �∼ ¬C to be modularly
entailed byKB. Note that� �∼ ¬C is not equivalent toC �∼ ⊥ in preferential interpretations. In fact,
it follows easily from Lemma 2 that C �∼ ⊥ is equivalent to C � ⊥ in preferential interpretations.

Intuitively, a DCI is exceptional if it does not concern the most typical objects, i.e., it is about
less normal (or exceptional) ones. This is an intuitive translation of the notion of exceptionality
used by Lehmann and Magidor [70] in the propositional framework, and has already been used by
Casini and Straccia [45] and Giordano et al. [60] in their investigations into defeasible reasoning
for description logics.

Applying the notion of exceptionality iteratively, we associate with every concept C a rank

inKB, which we denote by rankK B (C ). We extend this to DCIs and associate with every statement
C �∼ D a rank, denoted rankK B (C �∼ D):

(1) Let rankK B (C ) = 0, if C is not exceptional in KB, and let rankK B (C �∼ D) = 0 for every
DCI havingC in the LHS, with rankK B (C ) = 0. The set of DCIs inD with rank 0 is denoted
as Drank

0 .
(2) Let rankK B (C ) = 1, ifC does not have a rank of 0 and it is not exceptional in the knowledge

baseKB1 composed of T and the exceptional part ofD, that is,KB1 = 〈T ,D \ Drank
0 〉.

If rankK B (C ) = 1, then let rankK B (C �∼ D) = 1 for every DCIC �∼ D. The set of DCIs inD
with rank 1 is denoted Drank

1 .
(3) In general, for i > 0, a concept C is assigned a rank of i if it does not have a rank of

i − 1 and it is not exceptional in KBi = 〈T ,D \⋃i−1
j=0Drank

j 〉. If rankK B (C ) = i , then

rankK B (C �∼ D) = i , for every DCIC �∼ D havingC in the LHS. The set of DCIs inD with

rank i is denoted Drank
i .

(4) By iterating the previous steps, we eventually reach a (possibly empty) subset E ⊆ D such
that all the DCIs in E are exceptional (since D is finite, we must reach such a point). We
define the rank of the DCIs in E (if there are any) as ∞, and the set E is denoted Drank

∞ .

Moreover, we set rankK B (C ) = ∞ for every C in the LHS of some DCI in Drank
∞ .

The notion of rank can also be extended to GCIs as follows: rankK B (C � D) = rankK B (C � ¬D).
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Following on the procedure above, the defeasible TBox D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉 (n ≥ 0), whereDrank
∞ may possibly be empty. So, through this procedure

we can assign a rank to every DCI.
We can check that for a concept C has a rank of∞ iff it is not satisfiable in any modular model

of KB, that is, KB |=mod C � ⊥.

Lemma 10. For every knowledge base KB and every concept C , rankK B (C ) = ∞ iff KB |=mod

C � ⊥.

Example 3. Let KB = T ∪ D, where T and D are as in Example 1, i.e., T = {EmpStud �
Student} and

D =
⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

Student �∼ ¬∃pays.Tax,

EmpStud �∼ ∃pays.Tax,

EmpStud � Parent �∼ ¬∃pays.Tax

⎫⎪⎪⎪⎬
⎪⎪⎪
⎭

Examining the concepts on the LHS of each DCI in KB, one can verify that Student is not ex-
ceptional w.r.t. KB. Therefore, rankK B (Student) = 0. We also find that rankK B (EmpStud) � 0
and rankK B (EmpStud � Parent) � 0, because both concepts are exceptional w.r.t. KB. Hence,
Drank

0 = {Student �∼ ¬∃pays.Tax} and KB0 = T ∪ Drank
0 .

KB1 is composed of T and D \ Drank
0 . We find that EmpStud is not exceptional w.r.t. KB1,

and therefore rankK B (EmpStud) = 1. Since EmpStud � Parent is exceptional w.r.t. KB1,
rankK B (EmpStud � Parent) � 1. Thus Drank

1 = {EmpStud �∼ ∃pays.Tax}. Similarly, KB2 is com-
posed of T and {EmpStud � Parent �∼ ¬∃pays.Tax}. We have that EmpStud � Parent is not ex-

ceptional w.r.t. KB2, and therefore rankK B (EmpStud � Parent) = 2. Finally, for this example,
Drank
∞ = ∅.

Adapting Lehmann and Magidor’s construction for propositional logic [70], the rational closure
of a defeasible knowledge base KB is defined as follows:

Definition 24 (Rational Closure). Let KB be a defeasible knowledge base and C,D ∈ L.

(1) C �∼ D is in the rational closure of KB if

rankK B (C � D) < rankK B (C � ¬D) or rankK B (C ) = ∞.

(2) C � D is in the rational closure of KB if rankK B (C � ¬D) = ∞.

Informally, the definition above says thatC �∼ D is in the rational closure of KB if the modular
models ofKB tell us that some instances ofC � D are more plausible than all instances ofC � ¬D,
while C � D is in the rational closure of KB if the instances of C � ¬D are impossible.

Example 3 (continued). Applying the definition above to the knowledge base in Example 3, we
can verify that Student �∼ ¬∃pays.Tax is in the rational closure ofKB, because rankK B (Student �
¬∃pays.Tax) = 0 and rankK B (Student � ∃pays.Tax) > 0. The latter can be derived from the fact
that Student � ∃pays.Tax is exceptional w.r.t. KB. Similarly, one can derive that both DCIs
EmpStud �∼ ∃pays.Tax and EmpStud � Parent �∼ ¬∃pays.Tax are in the rational closure of KB as
well.

We now state the main result of the present section, which provides an answer to the question
raised at the end of Section 4.2. (The proof can be found in Appendix E.)

Theorem 4. LetKB be a defeasible knowledge base having a modular model. A statement α is in

the rational closure of KB iff KB |=rat α .
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An easy corollary of this result is that rational closure preserves the equivalence between GCIs
of the form C � D and their defeasible counterparts (C � ¬D �∼ ⊥).

Corollary 3. C � D is in the rational closure of a defeasible knowledge baseKB iffC � ¬D �∼ ⊥
is in the restriction of the closure of KB under rational entailment to defeasible concept inclusions.

Rational entailment from a knowledge base can therefore be formulated as membership check-
ing of the rational closure of the knowledge base. Of course, from an application-oriented point of
view, this raises the question of how to compute membership of the rational closure of a knowledge
base, and what is the complexity thereof. This is precisely the topic of the next section.

5.2 Rational Entailment Checking

We now present an algorithm to effectively check the rational entailment of a DCI from a defeasible
knowledge base. Our algorithm is a modification of the one given by Casini and Straccia [45] for
defeasible ALC. Their algorithm had to be modified in two ways. First, their computation of
exceptionality had to be adapted (see below). Second, their algortihm does not always give back
the correct result in case Drank

∞ � ∅ — cf. Item 4 in the description in Section 5.1.
Let KB = T ∪ D be a defeasible knowledge base. The first step of the algorithm is to assign

a rank to each DCI in D. Central to this step is the exceptionality function Exceptional(·), which
computes the semantic notion of exceptionality of Definition 23. The function makes use of the
notion of materialisation to reduce concept exceptionality checking to entailment checking:

Definition 25 (Materialisation). Let D be a set of DCIs. With D =def {¬C � D | C �∼ D ∈ D}, we
denote the materialisation of D.

We can show that, given KB = T ∪ D and D′ ⊆ D, if T |=
�
D′ � ¬C , where |= denotes

classical ALC entailment, a DCI C �∼ D is exceptional w.r.t. T ∪ D′, thereby justifying the use
of Line 3 of function Exceptional(·). This is where our algorithm differs from that of Casini and

Straccia [45]. Their check for exceptionality involved checking whether T ∪ {� � E | E ∈ D′} |=
� � ¬C . The proof of the following lemma can be found in Appendix E.

Lemma 11. For KB = T ∪ D, if T |=
�
D � ¬C , then C �∼ D is exceptional w.r.t. T ∪ D.

Given a set of DCIs D′ ⊆ D, Exceptional(T ,D′) returns a subset E of D′ such that E is ex-
ceptional w.r.t. T ∪ D′.

Function Exceptional(T ,D′)
Input: T and D′ ⊆ D
Output: E ⊆ D′ such that E is exceptional w.r.t. T ∪ D′

1 E := ∅;
2 foreach C �∼ D ∈ D′ do

3 if T |=
�
D′ � ¬C then

4 E := E ∪ {C �∼ D}

5 return E

While the converse of Lemma 11 does not hold, it follows from Lemma 13 below that
this reduction to classical entailment checking, when applied iteratively (lines 4–14 in Algo-
rithm ComputeRanking(·)), fully captures the semantic notion of exceptionality of Definition 23.

Example 3 (continued). If we feed the knowledge base in Example 3 to the function
Exceptional(·), then we obtain the following output:

E = {EmpStud �∼ ∃pays.Tax, EmpStud � Parent �∼ ¬∃pays.Tax}.
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This is because both concepts on the LHS of the DCIs inD′ are exceptional w.r.t.KB in Example 3.

We now describe the overall ranking algorithm, presented in the function ComputeRanking(·)
below. The algorithm makes a finite sequence of calls to the function Exceptional(·), starting from
the knowledge baseKB = T ∪ D. The algorithm terminates with a partitioning of the axioms in
the DTBox, from which a ranking of axioms can easily be obtained.

Function ComputeRanking(KB)

Input: KB = T ∪ D
Output: KB∗ = T ∗ ∪ D∗ and an exceptionality ranking E

1 T ∗ := T ;

2 D∗ := D;

3 repeat

4 i := 0;

5 E0 := D∗;
6 E1 := Exceptional(T ∗,E0);

7 while Ei+1 � Ei do

8 i := i + 1;

9 Ei+1 := Exceptional(T ∗,Ei );

10 D∗∞ := Ei ;

11 T ∗ := T ∗ ∪ {C � D | C �∼ D ∈ D∗∞};
12 D∗ := D∗ \ D∗∞;

13 until D∗∞ = ∅;
14 E := (E0, . . . ,Ei−1);

15 return (KB∗ = T ∗ ∪ D∗, E);

We initialise T ∗ to T and D∗ to D (Lines 1 and 2 of ComputeRanking(·)). We then repeatedly
invoke the function Exceptional(·) to obtain a sequence of sets of DCIs E0,E1, . . ., where E0 = D∗
and each Ei+1 is the set of exceptional axioms in Ei (Lines 4–14 of ComputeRanking(·)).

Now, let CD∗ =def {C | C �∼ D ∈ D∗}, i.e., CD∗ is the set of all antecedents of DCIs inD∗. The ex-

ceptionality ranking of the DCIs inD∗ computed by Exceptional(·) makes use of T ∗,D∗, and CD∗ .
That is, it checks, for each concept C ∈ CD∗ , whether T ∗ |=

�
D∗ � ¬C . In case C is exceptional,

every DCI C �∼ D ∈ D∗ is exceptional w.r.t. KB∗ = T ∗ ∪ D∗ and is added to the set E1.
If E1 � E0, then we call Exceptional(·) for T ∗ ∪ E1, defining the set E2, and so on. Hence, given

KB∗ = T ∗ ∪ D∗, we construct a sequence E0,E1, . . . in the following way:

• E0 := D∗;
• Ei+1 := Exceptional(T ∗,Ei ), for i ≥ 0.

Example 3 (continued). Using the knowledge base of Example 3, we initialise T ∗ = {EmpStud �
Student} and

D∗ =
⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

Student �∼ ¬∃pays.Tax,

EmpStud �∼ ∃pays.Tax,

EmpStud � Parent �∼ ¬∃pays.Tax

⎫⎪⎪⎪⎬
⎪⎪⎪
⎭

.
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We then obtain the following exceptionality sequence:

E0 =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

Student �∼ ¬∃pays.Tax,

EmpStud �∼ ∃pays.Tax,

EmpStud � Parent �∼ ¬∃pays.Tax

⎫⎪⎪⎪⎬
⎪⎪⎪
⎭

,

E1 =

{
EmpStud �∼ ∃pays.Tax,

EmpStud � Parent �∼ ¬∃pays.Tax

}
,

E2 = {EmpStud � Parent �∼ ¬∃pays.Tax}.

SinceD∗ is finite, the construction will eventually terminate with a fixed point Efix correspond-
ing to Exceptional(T ∗,Efix). If this fixed point is non-empty, then the axioms in there are said to
have infinite rank. We therefore set D∗∞ =def Efix (Line 11 of ComputeRanking(·)), and the classi-
cal translations of these axioms are moved to the TBox. Hence, we redefine the knowledge base in
the following way (Lines 12 and 13 of ComputeRanking(·)):

• T ∗ := T ∗ ∪ {C � D | C �∼ D ∈ D∗∞};
• D∗ := D∗ \ D∗∞.

Function ComputeRanking(·) must terminate, since D is finite, and at every iteration, D∗ be-
comes smaller (hence, we have at most |D| iterations). In the end, we obtain a knowledge base
KB∗ = T ∗ ∪ D∗, which is modularly equivalent to the original knowledge base KB = T ∪ D
(see Lemma 12 below), in which D∗ has no DCIs of infinite rank (all the classical knowledge im-
plicit in the DTBox has been moved to the TBox). We say that such a knowledge base is in rank

normal form.
We also obtain a final exceptionality sequence E = (E0,E1, . . . ,Ei−1) (see Line 15 of the function

ComputeRanking(·)). Given E, it is possible to partition the set D∗ into the sets D0, . . . ,Dn , for
some n = i − 1 ≥ 0:

• For every j, 0 ≤ j ≤ n, Dj := Ej \ Ej+1;
• R := (D0, . . . ,Dn ).

The sequence R is a partition of the DTBox according to the level of exceptionality of each
defeasible inclusion in it.

Example 3 (continued). For KB as in Example 3, we obtain the partition R = {D0,D1,D2},
where D0 = {Student �∼ ¬∃pays.Tax}, D1 = {EmpStud �∼ ∃pays.Tax} and D2 = {EmpStud �
Parent �∼ ¬∃pays.Tax}.

At this stage, we have moved all the classical information implicit the DTBox to the TBox, and
ranked all the remaining DCIs, where the rank of a DCI is the index of the unique partition to
which it belongs, defined as follows:

Definition 26 (Ranking). For every C,D ∈ L:

• rk(C ) =def i , 0 ≤ i ≤ n, if Ei is the first element in the sequence (E0, . . . ,En ) s.t. T ∗ |=
�
Ei �C � ⊥ does not hold;

• rk(C ) =def ∞, if there is no such Ei ;
• rk(C �∼ D) =def rk(C ).

Remark 1. For every i ≤ j ≤ n, |=
�
Ej �

�
Ei .

Remark 2. For every i < j ≤ n, Di ∩ Dj = ∅.
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To summarise, we transform our initial knowledge base KB = T ∪ D, obtaining a modularly
equivalent knowledge base KB∗ = T ∗ ∪ D∗ (see Lemma 12 below) and a ranking of DCIs in the
form of a partitioning ofD∗. The main difference between ComputeRanking(·) and the analogous
procedure by Casini and Straccia [45] is the reiteration of the ranking procedure until D∗∞ = ∅
(lines 4–14 in ComputeRanking(·)). While the two procedures behave identically in the case where
there are no DCIs C �∼ D s.t. rankK B (C �∼ D) = ∞ in D, the procedure by Casini and Straccia [45]
did not handle all the cases correctly in which there is classical information implicit in the DTBox.
The example below shows the difference between the two procedures.

Example 4 ([49], Example 4). Let KB = 〈T ,D〉 be an ontology with

T = { A � B,

B � D � ⊥ },
D = { B �∼C,

A �∼ D,
E �∼ ∃r .A }.

It can be verified that the execution of ComputeRanking(KB) is as follows:

T ∗ = T ,D∗ = D,
First iteration : i = 0 E0 = D∗,E1 = {A �∼ D}

i = 1 E2 = {A �∼ D} (end while)

D∞ = E2 = {A �∼ D}
D∗ = D∗ \ {A �∼ D} = {B �∼C,E �∼ ∃r .A}
T ∗ = T ∗ ∪ {A � D} = {A � B,A � D,B � D � ⊥},

Second iteration : i = 0 E0 = D∗,E1 = {E �∼ ∃r .A}
i = 1 E2 = {E �∼ ∃r .A } (end while)

D∞ = E2 = {E �∼ ∃r .A}
D∗ = D∗ \ {E �∼ ∃r .A } = {B �∼C}
T ∗ = T ∗ ∪ {E � ∃r .A} = {A � B,A � D,B � D � ⊥,E � ∃r .A},

Third iteration : i = 0 E0 = D∗,E1 = ∅
i = 1 E2 = ∅ (end while)

D∞ = E2

D∗ = D∗ \ ∅ = {B �∼C}
T ∗ = T ∗ ∪ ∅ = {E � ∃r .A} = {A � B,A � D,B � D � ⊥,E � ∃r .A}
(end repeat) ,

for j = 1 D0 = E0 \ E1 = {B �∼C}.
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Therefore, ComputeRanking(KB) terminates with

T ∗ = { A � B,A � D,B � D � ⊥,E � ∃r .A },
D∗ = { B �∼C },
D0 = { B �∼C }.

The only defeasible axiom in D∗ is B �∼C , which has rank 0. Axioms A �∼ D and E �∼ ∃r .A have
rank∞ instead, and so are substituted by the classical counterparts A � D and E � ∃r .A; we need
to iterate the loop in lines 5–13 in procedure ComputeRanking more than once to determine such
ranking values.

The reader can notice in the example above that the iteration of the exceptionality procedure in
the lines 5–13 in the procedure ComputeRanking(·) was necessary because of the presence of the
role r in the axiom E �∼ ∃r .A; if the axiom had the form E �∼A, it would have been ranked inD∞ at
the first iteration. The decision procedure originally presented by Casini and Straccia ([45, p.83],
Steps 3 and 4) lacks the iteration of the exceptionality procedure in lines 5–13: consequently it is
not able to manage this kind of situations (that is, the axiom E � ∃r .A and the concept E would
have been considered of rank 0), while in all the other cases it behaves exactly like the procedure
ComputeRanking(·) presented here.

Our present procedure corresponds to the semantic constructions we have introduced above. in
particular, Lemma 45 in Appendix E and Lemma 13 below prove that the procedure here is correct
w.r.t. the semantics.

Given the knowledge baseKB∗ = T ∗ ∪ D∗, we can now define the main algorithm for deciding
whether a DCIC �∼ D is in the rational closure ofKB. To do that, we use the same approach as in
the function Exceptional(·), that is, given KB∗ = T ∗ ∪ D∗ and our sequence of sets E0, . . . ,En ,

we use the TBox T ∗ and the sets of conjunctions of materialisations
�
E0, . . . ,

�
En .

Definition 27 (Rational Deduction). Let KB = T ∪ D and let C,D ∈ L. We say that C �∼ D is

rationally deducible from KB, denoted KB �rat C �∼ D, if T ∗ |=
�
Ei �C � D, where

�
Ei is

the first element of the sequence
�
E0, . . . ,

�
En s.t. T ∗ |=

�
Ei � ¬C does not hold. If there is

no such element, then KB �rat C �∼ D if T ∗ |= C � D.

Observe that KB �rat C � D if and only if KB �rat C � ¬D �∼ ⊥, i.e., if and only if KB �rat

C � ¬D � ⊥ (that is to say, T ∗ |= C � D).
The algorithm corresponding to the steps above is presented in the function RationalClosure(·)

below.

Function RationalClosure(KB, α )

Input: KB = T ∪ D and a query α = C �∼ D.
Output: true if KB �rat C �∼ D, false otherwise

1 (KB∗ = T ∗ ∪ D∗,E = (E0, . . . ,En )) := ComputeRanking(KB);

2 i := 0;

3 while T ∗ |= �Ei �C � ⊥ and i ≤ n do

4 i := i + 1;

5 if i ≤ n then

6 return T ∗ |= �Ei �C � D;

7 else

8 return T ∗ |= C � D;
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Example 4 (continued). Let KB be as in Example 3 and assume we want to check whether the
DCI EmpStud �∼ ∃pays.Tax is in the rational closure ofKB. Then, the while-loop on Line 2 of func-

tion RationalClosure(·) terminates when i = 1. At this stage,
�
Ei = (¬EmpStud � ∃pays.Tax) �

(¬EmpStud � ¬Parent � ¬∃pays.Tax). Given this, one can check that T ∗ |=
�
Ei �C � ⊥

does not hold, i.e., it is not the case that {EmpStud � Student} |= (¬EmpStud � ∃pays.Tax) �
(¬EmpStud � ¬Parent � ¬∃pays.Tax) � EmpStud � ⊥. Finally, it is easy to confirm that we do

not have T ∗ |=
�
Ei �C � D, i.e., it is not the case that {EmpStud � Student} |= (¬EmpStud �

∃pays.Tax) � (¬EmpStud � ¬Parent � ¬∃pays.Tax) � EmpStud � ∃pays.Tax.

Before we state the main theorem of this section, we need to establish the correspondence be-
tween the ranking function rankK B (·) presented in Section 5.1 in the construction of the rational
closure of KB and linked by Theorem 4 to the definition of rational entailment, and the ranking
function rk(·) of Definition 26 used in the above algorithm. We also need to establish that the nor-
malisation of a knowledge base by our algorithm maintains modular equivalence. The proofs of
the following lemmas, as well as a number of prerequisite results, are in Appendix E.

Lemma 12. Let KB = T ∪ D and let KB∗ = T ∗ ∪ D∗ be obtained from KB through func-

tion ComputeRanking(·). Then KB and KB∗ are modularly equivalent.

Lemma 13. For every defeasible knowledge base KB = T ∪ D and every C ∈ L, rankK B (C ) =
rk(C ).

Now, we can state the main theorem, which links rational entailment to rational deduction via
Theorem 4. (The proof can be found in Appendix E.)

Theorem 5. Let KB = T ∪ D and let C,D ∈ L. Then KB �rat C �∼ D iff KB |=rat C �∼ D.

As an immediate consequence, we have that the function RationalClosure(·) is correct w.r.t. the
definition of rational closure in Definition 24.

Corollary 4. Checking rational entailment is exptime-complete.

Hence, entailment checking for defeasible ontologies is just as hard as classical subsumption
checking.

We conclude this section by noting that although rational closure is viewed as an appro-
priate form of defeasible reasoning, it does have its limitations, the first of which is that
it does not satisfy the presumption of independence [69, Section 3.1]. To consider a well-
worn example, suppose we know that birds usually fly and usually have wings, that both
penguins and robins are birds, and that penguins usually do not fly. That is, we have
the following knowledge base: KB = {Bird �∼ Flies,Bird �∼ HasWings,Penguin � Bird,Robin �
Bird,Penguin �∼ ¬Flies}. Rational closure allows us to conclude that robins usually have wings,
since they are viewed as typical birds, thereby satisfying the presumption of typicality. But with
penguins being atypical birds, rational closure does not allow us to conclude that penguins usually
have wings, thus violating the presumption of independence, which, in this context, would require
the atypicality of penguins w.r.t. flying to be independent of the typicality of penguins w.r.t. having
wings.

This deficiency is well-known, and there are other forms of defeasible reasoning that can over-
come this, most notably lexicographic closure [47], relevance closure [43], and inheritance-based
closure [46]. But note that the presumption of independence is propositional in nature. In fact, the
DL version of lexicographic closure is essentially a lifting to the DL case of a propositional solution
to the problem [69].
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What is perhaps of more interest is the inability of rational closure to deal with defeasibility
relating to the non-propositional aspects of descriptions logics. For example, Pensel and Turhan [74,
75] have shown that rational closure across role expressions does not always support defeasible
inheritance appropriately. Suppose we know that bosses are workers, do not have workers as
their superiors, and are usually responsible. Furthermore, suppose we know that workers usually
have bosses as their superiors. We thus have the knowledge base KB = {Boss � Worker,Boss �
¬∃hasSuperior.Worker, Boss �∼ Responsible,Worker �∼ ∃hasSuperior.Boss}. Since workers usually
have bosses as their superiors, and bosses are usually responsible, one would expect to be able to
conclude that workers usually have responsible superiors. But rational closure is unable to do
so. From the perspective of the algorithm for rational closure, this can be traced back to the use
of materialisation (Definition 25) when computing exceptionality, as Pensel and Turhan show. A
more detailed semantic explanation for this inability is still forthcoming, though.

6 RELATED WORK

In a sense, the first investigations on non-monotonic reasoning in DL-based systems date back
to the work by Brewka [22] and Cadoli et al. [40]. Other early proposals to introduce default-
style rules into description logics include the work by Baader and Hollunder [2, 3], Padgham and
Zhang [73], and Straccia [86], which are essentially based on Reiter’s default logic [79].

Quantz and Royer [77] were probably the first to consider lifting the preferential approach to a
DL setting. They propose a general framework for Preferential Default Description Logics (PDDL)
based on an ALC-like language by introducing a version of default subsumption and proposing
a preferential semantics for it. Their semantics is based on a simplified version of standard DL
interpretations. They assume all domains to be finite, which means their framework is much more
restrictive than ours in this aspect. They also allow for the use of object names (something we do
not do), and assume that the unique-name assumption holds for object names.

They focus on a version of entailment that they refer to as preferential entailment but that is to
be distinguished from the version of preferential entailment that we have presented in this article.
In what follows, we shall refer to their version as QR-preferential entailment.

QR-preferential entailment is concerned with what ought to follow from a set of DL statements,
together with a set of default subsumption statements, and is parametrised by a fixed partial order
on (simplified) DL interpretations. (That is, the ordering is on the set of DL interpretations, not
on the elements of their respective domains.) They prove that any QR-preferential entailment
satisfies the properties of a preferential consequence relation and, with some restrictions on the
partial order, satisfies rational monotonicity as well. QR-preferential entailment can therefore be
viewed as something in between the notions of preferential entailment (or modular entailment)
and rational entailment. It is also worth noting that although QR-preferential entailment satisfies
the properties of a preferential consequence relation, Quantz and Royer do not prove that QR-
preferential entailment provides a characterisation of preferential consequence in the spirit of the
representation results we have shown here.

Closely related to our work is that of Giordano et al. [57] who use preferential orderings on ΔI to
define a typicality operator T(·) onALC concepts such that the expression T(C ) � D corresponds
to ourC �∼ D. They provide a version of a representation result for preferential orderings in terms
of properties on selection functions (functions on the power set of the domain of interpretations),
but not a representation result along the lines of those we have shown here. In the same work,
the authors define a tableaux calculus for computing preferential entailment that relies on KLM-
style rules. Their approach is then extended with a circumscriptive-like solution (see below), since
it relies on the specification of a set of concepts for which atypical instances must be minimised
[59].

ACM Transactions on Computational Logic, Vol. 22, No. 1, Article 1. Publication date: November 2020.



1:24 K. Britz et al.

Giordano and colleagues [60, 61] also consider an approach that is similar, but incomparable
in terms of inferential power, to the aforementioned work by considering modular orderings on
ΔI (i.e., modular interpretations) and then employing a version of a minimal-model semantics,
in which some modular interpretations are preferred over others. This is similar in intuition to
rational entailment, and in fact it has been proved that our Big Ranked Model (Definition 21) cor-
responds to the main semantic construction they propose [49, Proposition 30].

Regarding an algorithm for computing rational closure, Giordano et al. [62] consider a different
approach, with an encoding that reduces defeasible subsumption (in their phrasing of this notion)
to classical subsumption in ALC. This encoding is the same as the one they use for reducing
defeasible subsumption in SHIQ to classical subsumption in SHIQ [60]. More recently, they
reported on a Protégé plugin based on this encoding [63]. Recently Bonatti has also investigated
how to extend the rational closure construction to DLs that do not satisfy the disjoint union model

property [12].
Outside the family of preferential systems, there are mature proposals based on circumscription

for DLs [9, 10, 84]. The main drawback of these approaches is the burden on the ontology engineer
to make appropriate decisions related to the (circumscriptive) fixing and varying of concepts and
the priority of defeasible subsumption statements. Such choices can have a major effect on the
conclusions drawn from the system, and can easily lead to counter-intuitive inferences. Moreover,
the use of circumscription usually implies a considerable increase in computational complexity
w.r.t. the underlying monotonic entailment relation. The comparison between the present work
and proposals outside the preferential family is more an issue about the pros and cons of the differ-
ent kinds of non-monotonic reasoning, rather than about their DL re-formulation. As stated in the
introduction, the preferential approach has a series of desirable qualities that, to our knowledge,
no other approach to non-monotonic reasoning shares.

A more recent proposal is the approach by Bonatti et al. [8, 11], which introduces a normality

operator N(·) on concepts. The resulting system, DLN , is not based on the preferential approach,
though, and as a consequence their closure operation does not allow defeasible subsumption to
satisfy the preferential properties, but it satisfies some interesting properties on the meta-level. It
also has the advantage of being computationally tractable for any tractable classical DL.

Lukasiewicz [71] proposes probabilistic versions of the description logics SHIF (D) and
SHOIN (D). As a special case of these logics, he obtains a version of a logic with defeasible
subsumption with a semantics based on that of the propositional version of lexicographic clo-
sure [69].

Casini and Straccia [45] define a decision procedure for ALC that is a version of an algo-
rithm for computing rational closure for the propositional case, but simply lifted to the case for
description logics. As such, their proposal has a syntactic characterisation, but lacks an appro-
priate semantics, a deficiency that the present article comes to remedy. The semantic approach
presented here can be extended also to other forms of entailment proposed by them [46–48]. The
main constructions and results in the present article have already been published in a technical
report [23], and here we present them in a more coherent and insightful framework. In particular,
the procedures presented here have been exploited by the authors in other publications. For ex-
ample, recently Casini, Straccia and Meyer have used it also to characterise a decision procedure
for defeasible EL⊥ [49], and some initial experimental results have already been published [44].
An application of our algorithms in the legal framework is under development at present [80].

Britz and Varzinczak [32, 36, 37] explore the notion of defeasible modalities, with which defeasi-
ble effects of actions, defeasible knowledge, obligations and others can be formalised and given an
intuitive preferential semantics. The approach followed there only considers preferential entail-
ment, but the semantic constructions are similar. This was extended [25] to a notion of defeasible
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role restrictions in a DL setting. The idea comprises extending the language of ALC with an ad-
ditional construct

∨∼. The semantics of a concept
∨∼r .C =def {x ∈ ΔP | min≺P r

P (x ) ⊆ CP} is then
given by all objects of ΔP such that all of their minimal r -related objects are C-instances. This is
useful in situations where certain classical concept descriptions may be too strong.

Recently, Britz and Varzinczak have lifted the preferential semantics to also allow for orderings
on role-interpretations [33, 35] that, in turn, induce multi-orderings on objects of the domain [34,
38, 39]. The latter give us the handle needed to introduce a notion of context in defeasible sub-
sumption relations making typicality a relativised construct. The former provides a semantics for
defeasible role inclusions of the form r �∼ s and for defeasible role assertions such as “r is usually
transitive”, “r and s are usually disjoint”, as well as others.

Another recent proposal that uses contextual reasoning to cope with defeasibility has been de-
veloped by Bozzato and others [19, 20], extending with an overriding mechanism the Contextual-

ized Knowledge Repository (CKR) framework [21].
Finally, there is the recent work of Pensel and Turhan [74, 75] mentioned in Section 5.2, the

aim of which is to extend both rational closure and relevant closure with defeasible inheritance
across role expressions in the description logic EL⊥. With their work being restricted to EL⊥, the
semantics they propose is based on a form of canonical model similar to those frequently used for
the EL family of DLs, and is therefore quite different from ours. A detailed comparison of their
semantics with the one we provide in this article is left as future work.

7 CONCLUDING REMARKS

The main contributions of the work reported in the present article can be summarised as follows:

(1) The analysis of a simple and intuitive semantics for defeasible subsumption in description
logics that is general enough to constitute the core framework within which to investigate
non-monotonic extensions of DLs;

(2) A characterisation of preferential and rational subsumption relations, with the respective
representation results, evidencing the fact that our semantic constructions are appropri-
ate;

(3) An investigation of what an appropriate notion of entailment in a defeasible DL context
means and the analysis of a suitable candidate, namely, rational entailment, and

(4) The formal connection between rational entailment, the notion of rational closure and an
algorithm for its computation.

With regard to point (4) above, the main advantages of our approach are as follows: (i) it re-
lies completely on classical entailment, i.e., entailment checking over defeasible ontologies can be
reduced to a number of classical entailment checks over a rewritten ontology; (ii) it has computa-
tional complexity that is no worse than that of entailment checking in the classical underlying DL;
and (iii) it is easily implementable, e.g., as a Protégé plugin,3 of which the performance has been
shown to scale well in practice [44]. In a companion paper [24], the framework described here
is extended to include ABox reasoning, with more extensive experimental results confirming the
initial promising results on scalability.

In Section 3.2, we briefly presented three properties involving quantifiers that are satisfied by
preferential subsumption relations. For future work, we are interested in a more detailed study of
properties involving quantifiers that are not satisfied by preferential subsumption relations (or not

3https://github.com/kodymoodley/defeasibleinferenceplatform.
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satisfied by rational subsumption relations), such as (∀Or):

(∀Or)
∀r .C �∼ E, ∀r .D �∼ E
∀r .(C � D) �∼ E

.

Further topics for future research include the full integration of notions such as typicality for both
concepts and roles [13–16, 57, 59, 87] and role-based defeasible constructors [33, 35, 38, 39] with
the work presented here. The semantic constructions are compatible, but the rational entailment
checking procedure of Section 5.2 would need to be generalised to deal with the additional defeasi-
ble constructs. Another avenue for future exploration is the study of belief revision for DLs via our
results for rationality, somewhat mimicking the well-known connection between belief revision
and rational consequence in the propositional case [41, 42, 53], thereby pushing the frontiers of
theory change in logics that are more expressive than the propositional one.

APPENDICES

A PROOFS OF LEMMAS IN SECTION 3.2

NB: The results marked (∗) are introduced here in the Appendix, while they are omitted in the
main text.

Lemma 2. For every preferential interpretation P, and every C,D ∈ L, P � C � D if and only if

P � C � ¬D �∼ ⊥.

Proof. From left to right, P � C � D implies, by Lemma 1, that (C � ¬D)P = ∅. The latter
implies that, for every concept E, P � C � ¬D �∼ E, and, as a particular case, P � C � ¬D �∼ ⊥.

From right to left, if it is not the case that P � C � D, then (C � ¬D)P � ∅. Let x be an object in
min≺P (C � ¬D)P : for P � C � ¬D �∼ ⊥, we should have also x ∈ ⊥P , which is a contradiction. �

Definition 28 (Disjoint-Union Preferential Interpretation). Let S be a countable set and let P =

{Ps = 〈ΔPs , ·Ps ,≺Ps 〉 | s ∈ S } be a collection of preferential interpretations. The disjoint union

of P is a tupleU =def 〈ΔU , ·U ,≺U〉 where:

• ΔU =def {(x , s ) | x ∈ ΔPs and s ∈ S };
• AU =def {(x , s ) | x ∈ APs and s ∈ S }, for every A ∈ C;
• rU =def {((x , s ), (y, s )) | (x ,y) ∈ r Ps and s ∈ S }, for every r ∈ R;
• ≺U=def {((x , s ), (y, s )) | (x ,y) ∈≺Ps and s ∈ S }.

Lemma 14 (∗). Let S and P be as in Definition 28 and let U be the latter’s disjoint union. For

every C ∈ L, every s ∈ S , and every x ∈ ΔPs , x ∈ CPs if and only if (x , s ) ∈ CU .

Proof. For every s ∈ S , define Es =def {(x , (x , s )) | x ∈ ΔPs }. We can easily show that Es is a
preferential bisimulation [37] between Ps andU . The lemma is then proved by induction on the
structure of concepts in the usual way [4]. �

It is easy to see that the following result also holds:

Lemma 15 (∗). Let S and P be as in Definition 28 and let U be the latter’s disjoint union. For

every C ∈ L, every s ∈ S , and every x ∈ ΔPs , x ∈ min≺Ps CPs if and only if (x , s ) ∈ min≺U C
U .

Lemma 3. Preferential interpretations are closed under disjoint union.

Proof. LetKB be a defeasible knowledge base, let S and P be as in Definition 28 and such that
Ps � KB, for every Ps ∈P , and letU be the disjoint union of the models in P . We have to show
that U � KB. Assume that we do not have U � KB. Then there must be a DCI C �∼ D ∈ KB
(recall Lemma 2) and an object (x , s ) ∈ ΔU such that (x , s ) ∈ min≺U C

U but (x , s ) � DU . From
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Lemmas 14 and 15 above, it follows that x ∈ min≺Ps CPs and x � DPs , and therefore, we do not
have Ps � C �∼ D. Hence, it is not the case that Ps � KB, which contradicts our assumption. �

B PROOF OF THEOREM 1

Theorem 1 (Representation Result for Preferential Subsumption). A defeasible subsump-

tion relation �∼ ⊆ L × L is preferential if and only if there is a preferential interpretation P such

that �∼ P = �∼ .

B.1 If Part

We show that �∼ P is preferential for every preferential interpretation P = 〈ΔP , ·P ,≺P〉.
(Ref): Let x ∈ ΔP be such that x ∈ min≺P C

P . Then clearly x ∈ CP , and therefore P � C �∼C .
Hence, C �∼ PC .

(LLE): Assume thatC �∼ PE and P � C ≡ D. Then P � C �∼ E, which means min≺P C
P ⊆ EP . Since

P � C ≡ D, i.e., CP = DP , we have min≺P C
P = min≺P D

P . Hence, min≺P D
P ⊆ EP , and there-

fore P � D �∼ E, from which follows D �∼ PE.

(And): Assume we have both C �∼ PD and C �∼ PE. Then P � C �∼ D and P � C �∼ E, i.e.,

min≺P C
P ⊆ DP and min≺P C

P ⊆ EP , and then min≺P C
P ⊆ DP ∩ EP , from which follows

min≺P C
P ⊆ (D � E)P . Hence, P � C �∼ D � E, and therefore C �∼ PD � E.

(Or): Assume we have both C �∼ PE and D �∼ PE. Let x ∈ min≺P (C � D)P . Then x is minimal in

CP ∪ DP , and therefore either x ∈ min≺P C
P or x ∈ min≺P D

P . In either case x ∈ EP . Hence, P �
C � D �∼ E, and therefore C � D �∼ PE.

(RW): Assume we have bothC �∼ PD and P � D � E. Then P � C �∼ D, i.e., min≺P C
P ⊆ DP , and

DP ⊆ EP . Hence, min≺P C
P ⊆ EP and then P � C �∼ E. Therefore, C �∼ PE.

(CM): Assume we have both C �∼ PD and C �∼ PE. Then P � C �∼ D and P � C �∼ E, and there-

fore min≺P C
P ⊆ DP and min≺P C

P ⊆ EP . Let x ∈ min≺P (C � D)P . We show that x ∈ min≺P C
P .

Suppose this is not the case. Since ≺P is smooth, there must be x ′ ∈ min≺P C
P such that x ′ ≺P x .

Because P � C �∼ D, x ′ ∈ DP , and then x ′ ∈ CP ∩ DP , i.e., x ′ ∈ (C � D)P . From this and x ′ ≺P x

it follows that x is not minimal in (C � D)P , which is a contradiction. Hence, x ∈ min≺P C
P . From

this and min≺P C
P ⊆ EP , it follows that x ∈ EP . Hence,P � C � D �∼ E, and thereforeC � D �∼ PE.

B.2 Only-if Part

NB: The results marked (∗) are introduced here in the Appendix, while they are omitted in the
main text.

Let �∼ ⊆ L × L be a preferential subsumption relation. We shall construct a preferential inter-
pretation P such that �∼ P =def {(C,D) | P � C �∼ D} = �∼ .

Definition 29. Let U =def {(I,x ) | I = 〈ΔI , ·I〉 and x ∈ ΔI}.

Intuitively, U denotes the universe of objects in the context of their respective DL interpreta-
tions, i.e., U is a set of first-order interpretations.

Definition 30. A pair (I,x ) ∈ U is normal for C ∈ L if for every D ∈ L such that C �∼ D, we

have x ∈ DI .

Lemma 16 (∗). Let �∼ ⊆ L × L satisfy (Ref), (RW) and (And), and let C,D ∈ L. Then all nor-

mal (I,x ) for C satisfy D if and only if C �∼ D.
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Proof. The if part follows from the definition of normality above. For the only-if part, assume
we do not have C �∼ D. We build a pair (I,x ) that is normal for C but that does not satisfy D.

Let Γ =def {¬D} ∪ {E ∈ L | C �∼ E}. All we need to do is show that there is (I,x ) such that x ∈ F I
for every F ∈ Γ. Suppose this is not the case. Then by compactness there exists a finite Γ′ ⊆ Γ such
that |=

�
F ∈Γ′ F � D. From this follows |= � � ¬

�
F ∈Γ′ F � D, and, in particular, we have |= C �

¬
�

F ∈Γ′ F � D. Now from (Ref), we haveC �∼C . From this, |= C � ¬
�

F ∈Γ′ F � D, and (RW) we get
C �∼ (¬

�
F ∈Γ′ F � D). But, we also haveC �∼

�
F ∈Γ′ F by the (And) rule, and then by applying (And),

once more we derive C �∼
�

F ∈Γ′ F � (¬
�

F ∈Γ′ F � D). From this and (RW), we conclude C �∼ D,
from which we derive a contradiction. �

Lemma 17 (∗). If �∼ is preferential, then the following rule holds:

C � D �∼C, D � E �∼ D
C � E �∼C

.

Proof. The proof is analogous to that by Kraus et al. [67, Lemma 22]. �

Definition 31. Let C,D ∈ L. C ≤ D if C � D �∼C .

Lemma 18 (∗). If �∼ is preferential, then ≤ is reflexive and transitive.

Proof. From (Ref), we haveC �∼C . This and (LLE) gives usC �C �∼C , therefore, we haveC ≤ C
and ≤ is reflexive. Transitivity follows from Lemma 17. �

Lemma 19 (∗). If �∼ is preferential, then the following rule holds:

C � D �∼C, D �∼ E
C �∼ ¬D � E

.

Proof. The proof is analogous to that by Kraus et al. [67, Lemma 5.5]. �

Lemma 20 (∗). If C ≤ D and (I,x ) is normal for C , and x ∈ DI , then (I,x ) is normal for D.

Proof. From C ≤ D, we get C � D �∼C . Assume that D �∼ E is the case. Then by Lemma 19, we

have C �∼ ¬D � E. Since (I,x ) is normal for C , we have x ∈ (¬D � E)I . Given that x ∈ DI , we

must have x ∈ EI . �

Lemma 21 (∗). If �∼ is preferential, then the following rule holds:

C � D �∼C, D � E �∼ D
C �∼ ¬E � D

.

Proof. The proof is analogous to that by Kraus et al. [67, Lemma 5.5]. �

Lemma 22 (∗). If C ≤ D ≤ E and (I,x ) is normal for C , and x ∈ EI , then (I,x ) is normal for D.

Proof. By Lemma 20, it is enough to show that x ∈ DI . By Lemma 21, we have C �∼ ¬E � D.

Since (I,x ) is normal for C and x ∈ EI , then we must have x ∈ DI . �

We now construct a preferential interpretation as in Definition 5.
Let C⊥ =def {C | C �∼ ⊥} and let I =def {I = 〈ΔI , ·I〉 | CI = ∅ for all C ∈ C⊥}. Intuitively, I

contains all interpretations that are “compatible” with �∼ in the sense of not satisfying concepts
that are defeasibly subsumed by the contradiction.

For each I ∈ I , let I+ =def 〈ΔI
+

, ·I+〉 be such that:

• ΔI
+

=def X
C ∪ X⊥, where XC =def {〈I,x ,C〉 | (I,x ) is normal for C ∈ L}, and X⊥ =def

{〈I,x ,⊥〉 | (I,x ) is not normal for any C ∈ L};
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• ·I+ is such that for every D ∈ L, 〈I,x ,C〉 ∈ DI+ if and only if x ∈ DI , and for every r ∈ R,

(〈I,x ,C〉, 〈I,y,D〉) ∈ r I+ if and only if (x ,y) ∈ r I .

Let P =def 〈ΔP , ·P ,≺P〉 be such that:

• ΔP =def
⋃
I∈I ΔI

+

;

• ·P =def
⋃
I∈I ·I

+

;
• ≺P is the smallest relation such that:
• For every 〈I,x ,C〉 ∈ ΔP such that C � ⊥, 〈I,x ,C〉 ≺P 〈J ,y,⊥〉 for every 〈J ,y,⊥〉 ∈

ΔP ;
• For every 〈I,x ,C〉, 〈J ,y,D〉 ∈ ΔP such thatC,D � ⊥, 〈I,x ,C〉 ≺P 〈J ,y,D〉 if and only

if C ≤ D and x � DI .

(In the construction of P, note that all pairs (I,x ) that are not normal for any conceptC are moved
higher up in the ordering so that they correspond to the least preferred objects of the domain.)

In Lemmas 23 to 28, below we show that P as constructed above is indeed a preferential inter-
pretation.

Lemma 23 (∗). ΔP � ∅.
Proof. From the fact that � �∼ ⊥ does not hold and Lemma 16, it follows that there is some

normal (I,x ) for � that does not satisfy ⊥. Hence, 〈I,x ,�〉 ∈ ΔP , and therefore ΔP � ∅. �

Lemma 24 (∗). C ≤ ⊥ for every C ∈ L.

Proof. By (Ref), we haveC �∼C . Since |= C ≡ C � ⊥, by (LLE), we getC � ⊥ �∼C , and then from
the definition of ≤ follows C ≤ ⊥. �

Lemma 25 (∗). ≺P is a strict partial order on ΔP , i.e., ≺P is irreflexive and transitive.

Proof. First, we show irreflexivity. From the construction of ≺P , it clearly follows that for every
〈I,x ,⊥〉 ∈ ΔP , (〈I,x ,⊥〉, 〈I,x ,⊥〉) �≺. Assume that 〈I,x ,C〉 ≺P 〈I,x ,C〉 for someC � ⊥. Then
C ≤ C and x � CI , i.e., C �C �∼C , and then C �∼C , by (LLE). This and x � CI contradicts the fact

that (I,x ) is normal for C . Hence, (〈I,x ,C〉, 〈I,x ,C〉) �≺P for every 〈I,x ,C〉 ∈ ΔI .
We now show transitivity. Suppose 〈I,x ,C〉 ≺P 〈I′,x ′,D〉 and 〈I′,x ′,D〉 ≺P 〈I′′,x ′′,E〉. From

the definition of ≺P , we know that C,D � ⊥, since all non-normal objects are at the highest level
in the ordering and are all incomparable. We then have C ≤ D and D ≤ E. (If E = ⊥, then we also
haveD ≤ E by Lemma 24.) From transitivity of ≤ (Lemma 18), we concludeC ≤ E. Since 〈I,x ,C〉 ∈
ΔP and 〈I,x ,C〉 ≺P 〈I′,x ′,D〉, we conclude that (I,x ) is normal for C and x � DP . This and
Lemma 22 imply that x � EP . �

Lemma 26 (∗). Given 〈I,x ,D〉 ∈ ΔP , 〈I,x ,D〉 ∈ min≺P C
P iff x ∈ CI and D ≤ C .

Proof. For the if part, suppose that x ∈ CI and D ≤ C . Then it clearly follows that 〈I,x ,D〉 ∈
CP (Lemma 20). Now suppose that 〈I,x ,D〉 is not ≺P-minimal in CP , i.e., there is 〈I′,x ′,E〉 for

some I′ such that x ′ ∈ ΔI
′

and some E ∈ L such that 〈I′,x ′,E〉 ≺P 〈I,x ,D〉 and x ′ ∈ CI′ . From
this and the definition of ≺P , it follows that E ≤ D and x ′ � DI

′
. Hence, E ≤ D ≤ C and (I′,x ′) is

normal for E, and since x ′ ∈ CI′ , by Lemma 22, we get that (I′,x ′) is normal for D, from which

we conclude x ′ ∈ DI′ , a contradiction.
For the only-if part, suppose that 〈I,x ,D〉 is ≺P-minimal in CP . Then clearly x ∈ CI . Now

assume there is some (I′,x ′), which is normal forC � D and x ′ � DI
′
. SinceC � D ≤ D, we must

have 〈I′,x ′,C � D〉 ≺P 〈I,x ,D〉. Since (I′,x ′) is normal for C � D and x ′ � DI
′
, it follows that

x ′ ∈ CI′ . This contradicts the minimality of 〈I,x ,D〉 in CP . Hence, all normal (I′,x ′) for C � D
satisfy D. From this and Lemma 16 follows C � D �∼ D, i.e., D ≤ C . �
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Lemma 27 (∗). There is no C ∈ L such that CP � ∅ and ⊥ ≤ C .

Proof. Let C ∈ L be such that CP � ∅. Assume that ⊥ ≤ C . Then, ⊥ �C �∼ ⊥, i.e., C �∼ ⊥.

Then, C ∈ C⊥, and then CP = ∅ by the construction of P. �

Corollary 5 (∗). It follows from the two last lemmas that there is no C ∈ L for which any

〈I,x ,⊥〉 ∈ ΔP is minimal.

Lemma 28 (∗). For any C ∈ L, CP is smooth.

Proof. Suppose that 〈I,x ,D〉 ∈ CP , i.e., x ∈ CI . If D ≤ C , then by Lemma 26 〈I,x ,D〉 is ≺P-
minimal inCP . However, i.e., if D �≤ C , then we do not haveC � D �∼ D, then by Lemma 16 there is

a normal (I′,x ′) for C � D such that x � DI
′
. But C � D �∼C � D, and then (C � D) � D �∼C � D,

and then C � D ≤ D. Hence, 〈I′,x ′,C � D〉 ≺P 〈I,x ,D〉. But x ′ ∈ (C � D)I
′

and x ′ � DI
′
, there-

fore x ′ ∈ CI′ . Since C � D ≤ C , from Lemma 26, we conclude that 〈I′,x ′,C � D〉 is ≺P-minimal
in CP . �

Next, we show in Lemma 29 that the abstract relation �∼ we started off with coincides with the
relation �∼ P obtained from our constructed preferential interpretation P.

Lemma 29 (∗). C �∼ D if and only if C �∼ PD.

Proof. For the only-if part, we show that min≺P C
P ⊆ DP . Let 〈I,x ,E〉 be ≺P-minimal inCP .

Then (I,x ) is normal for E and x ∈ CP , and from Lemma 26, we also have E ≤ C . From these
results and Lemma 20 it follows that (I,x ) is normal for C . Since C �∼ D, we have x ∈ DI , and

therefore 〈I,x ,E〉 ∈ ΔP .
For the if part, let C �∼ PD. From the definition of ≺P , it follows that for every (I,x ) normal

for C , 〈I,x ,C〉 ∈ min≺P C
P . Since C �∼ PD, then y ∈ DI′ for every (I′,y) that is normal for C .

This and Lemma 16 give us C �∼ D. �

Proof of Theorem 1:
Soundness, the if part, is given in Section B.1. For the only-if part, let �∼ be a preferential sub-

sumption relation and let P be defined as above. Lemmas 23, 25 and 28 show that P is a preferen-
tial DL interpretation. Lemma 29 shows that P defines a subsumption relation that is exactly �∼ .

C PROOF OF THEOREM 2

Theorem 2 (Representation Result for Rational Subsumption). A defeasible subsumption

relation �∼ ⊆ L × L is rational if and only if there is a modular interpretationR such that �∼ R = �∼ .

C.1 If Part

Satisfaction of the basic KLM properties for preferential subsumption follows from the proof in
Section B.1, given the fact that modular interpretations are a special case of preferential interpre-
tations. Below, we show that rational monotonicity is satisfied.

Assume that C �∼ RE and that we do not have C �∼ R¬D. From the latter it follows that there

is x ∈ min≺R C
R such that x ∈ DR , i.e., x ∈ (C � D)R . Let now x ′ ∈ min≺R (C � D)R . Since x ∈

(C � D)R , (x ,x ′) �≺R . This means that x ′ ∈ min≺R C
R , for if there is x ′′ ∈ CR such that x ′′ ≺R x ′,

then x ′′ ≺R x , which is impossible, since x is minimal inCR . From x ′ ∈ min≺R C
R and R � C �∼ E

follows x ′ ∈ ER . Hence, R � C � D �∼ E, and therefore C � D �∼ RE.

C.2 Only-if Part

NB: The results marked (∗) are introduced here in the Appendix, while they are omitted in the
main text.
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The proof of the only-if part relies on the results for the preferential case (Section B.1), with the
main difference being the definition of the preference relation, which is shown to be a smooth
modular order. This ensures that the canonical model constructed in the proof is a modular
interpretation.

Let �∼ ⊆ L × L satisfy all the basic properties of preferential subsumption relations together
with rational monotonicity.

The proof of the following lemma is analogous to that of Lemma 3.11 by Lehmann and Magi-
dor [70]:

Lemma 30 (∗). If �∼ is rational, then the properties below hold:

C � D �∼ ¬D
C �∼ ¬D

,
C � E �∼ ¬C, D � E ��∼ ¬D

C � D �∼ ¬C
.

Definition 32. LetC ∈ L. We say thatC is consistent w.r.t. �∼ ifC ��∼ ⊥. Given R = 〈ΔR , ·R ,≺R〉,
we say that C is consistent w.r.t. �∼ R if C �∼ R⊥ does not hold, i.e., if there is x ∈ ΔR s.t. x ∈ CR .

Let C = {C ∈ L | C is consistent w.r.t. �∼ }.

Lemma 31 (∗). Let C ∈ L and let �∼ be a rational relation. Then C ∈ C iff there is (I,x ) ∈ U s.t.

(I,x ) is normal for C . (Cf. Definitions 29 and 30 in Appendix B.2.)

Definition 33. GivenC,D ∈ C,C is not more exceptional thanD, writtenCRD, ifC � D ��∼ ¬C .
We say that C is as exceptional as D, written C ∼ D, if CRD and DRC .

The proof of the lemma below follows those of Lemmas A.4 and A.5 by Lehmann and
Magidor [70]:

Lemma 32 (∗). R is reflexive and transitive.

That ∼ is an equivalence relation follows from the fact that R is reflexive and transi-
tive (Lemma 32). With [C], we denote the equivalence class ofC . The set of equivalence classes of
concepts of C under ∼ is denoted by [C]. We write [C] ≤ [D] if CRD, and [C] < [D] if [C] ≤ [D]
and C � D.

Thanks to Lemma 32, we can state the following:

Lemma 33 (∗). The relation < is a strict order on [C].

Lemma 34 (∗). Let C,D ∈ L be consistent w.r.t. �∼ . If [C] < [D], then C �∼ ¬D.

Proof. The assumption implies thatCRD is not the case, i.e.,C � D �∼ ¬C . This and Lemma 30
imply the conclusion. �

Lemma 34 warrants the following result:

Lemma 35 (∗). Let C,D ∈ L be consistent w.r.t. �∼ . If there is (I,x ) ∈ U s.t. (I,x ) is normal for

C and x ∈ DI , then [D] ≤ [C].

Armed with these results, we can then construct an interpretation R analogous to the prefer-
ential interpretation P in Appendix B.2, with the preference relation defined as follows:

• For every 〈I,x ,C〉 ∈ ΔR such that C � ⊥, 〈I,x ,C〉 ≺R 〈J ,y,⊥〉 for every 〈J ,y,⊥〉 ∈ ΔR ;
• For every 〈I,x ,C〉, 〈J ,y,D〉 ∈ ΔR such that C,D � ⊥, 〈I,x ,C〉 ≺R 〈J ,y,D〉 if [C] < [D].

It is not hard to see that this definition implies the following result:

Lemma 36 (∗). ≺R is a modular partial order.
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The proof of the following lemma follows that of Lehmann and Magidor’s Lemma A.12 [70]:

Lemma 37 (∗). For every C ∈ L, if C is consistent, then CR is smooth.

From this point on, a result analogous to Lemma 29 in B.2 can be shown to hold for the defeasible
subsumption �∼ R induced by R. From that the result follows.

D PROOFS OF RESULTS IN SECTION 4

Lemma 4. Lemma Let KB be a defeasible knowledge base. Then,

�∼ K B∗pref
=
⋂
{ �∼ K | KB ⊆ K and K is preferential}.

Proof. By Definitions 10 and 11, α ∈ KB∗pref iff for every preferential model P ofKB, P � α .

Combined with Lemma 2, this implies that, for any defeasible subsumptionC �∼ D,C �∼ D ∈ KB
∗
pref

iff (C,D) ∈ �∼ P for every preferential model P of KB. Due to Theorem 1, the latter condition,
that is, (C,D) ∈ �∼ P for every preferential model P ofKB, holds iff (C,D) ∈ �∼ K for every pref-
erential theory K containing KB. This concludes the proof. �

Lemma 5. Let KB be a defeasible knowledge base. Then,

�∼ K B∗mod
=
⋂
{ �∼ K | KB ⊆ K and K is rational}.

Proof. The proof follows the one of Lemma 4. It is sufficient to refer to Definitions 14 and 15
instead of Definitions 10 and 11, and to Theorem 2 instead of Theorem 1. �

Lemma 7. A modular interpretation R = 〈ΔR , ·R ,≺R〉 s.t. ΔR is finite is a ranked interpretation.

Proof. The preference relation ≺R is a strict partial order, hence, since there cannot be cycles,
for every finite set ∅ � X ⊆ ΔR , min≺R X � ∅. We can define the function hR (·) in the following
way:

(1) ΔR
0
=def ΔR ;

(2) i =def 0;

(3) If ΔR
i

� ∅, then proceed; else, return the function hR ;

(4) hR (x ) = i iff x ∈ min≺R ΔR
i

; let ΔR
i+1
=def ΔR

i \min≺R ΔR
i

;
(5) i =def i + 1;
(6) Go back to step 3.

It is easy to check that hR (·) satisfies the convexity property and characterises ≺R (i.e., x ≺R y iff
hR (x ) < hR (y)). �

Proposition 1. Given a ranked interpretation R = 〈ΔR , ·R ,≺R〉, there is only one function hR :
X −→ N satisfying the convexity property and s.t. for every x ,y ∈ X , x ≺ y iff hR (x ) < hR (y).

Proof. Assume that for a ranked interpretation R = 〈ΔR , ·R ,≺R〉 there are two distinct func-
tionshR (·) andh′R (·) satisfying the convexity constraint and characterising≺R . Since the two func-
tions are distinct, at a certain point they must diverge; that is, there must be an i ∈ N s.t. for every
k < i and every x ∈ ΔR , hR (x ) = k iff h′R (x ) = k , but there is ay ∈ ΔR s.t. hR (y) = i and h′R (y) = j,

with j > i . The convexity constraint imposes that there must be a z ∈ ΔR s.t. h′R (z) = i: then h′R (·)
enforces z ≺R y, while according to hR (·) that cannot be the case (it must be hR (y) ≤ hR (z)). �

Some extra material needs to be introduced to prove Theorem 3, stating the Finite Model Prop-
erty for Defeasible ALC. First, we will refer to the following semantic construction.
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Definition 34 (Finite Model Construction). (∗) LetKB = T ∪ D be a finite defeasible knowledge
base, and let R = 〈ΔR , ·R ,≺R〉 be a modular model of KB (with ΔR possibly infinite). Let C,R be
the sets of names of our language, as from Section 2, and Γ be the set of concepts {C1, . . . ,Cn } ⊆ L
obtained by closing the set of all concepts appearing in the axioms inKB under sub-concepts and
negation. We define the equivalence relation ≈Γ as follows: for every x ,y ∈ ΔR , x ≈Γ y if for every
C ∈ Γ, x ∈ CR iff y ∈ CR .

We indicate with [x]Γ the equivalence class of the objects that are related to an object x through
≈Γ :

[x]Γ =def {y ∈ ΔR | x ≈Γ y}.
We introduce a new model R′ = 〈ΔR′, ·R′,≺R′〉, defined as follows:

• ΔR
′
= {[x]Γ | x ∈ ΔR};

• For every A ∈ C ∩ Γ, AR
′
= {[x]Γ | x ∈ AR};

• For every A � C ∩ Γ, AR
′
= ∅;

• For every r ∈ R, r R
′
= {([x]Γ, [y]Γ ) | (x ,y) ∈ r R};

• For every [x]Γ, [y]Γ ∈ ΔR
′
, [x]Γ ≺R

′
[y]Γ if there is an object z ∈ [x]Γ s.t. for all the objects

v ∈ [y]Γ , z ≺R v ;

Let ∼R′ be the indifference relation, defined as usual:

• [x]Γ ∼R
′

[y]Γ if ([x]Γ, [y]Γ ) �≺R′ and ([y]Γ, [x]Γ ) �≺R′ .

Given that Γ is finite, ΔR
′

is clearly finite. The following results are easy to prove.

Lemma 38 (∗). For every C ∈ Γ and every x ∈ ΔR , x ∈ CR iff [x]Γ ∈ CR
′
.

Proof. The proof is analogous to that for the classical case and is by induction on the structure
of concepts. �

Lemma 39 (∗). Let ≺R′ and ≺R be as in Definition 34. Then ≺R′ is a strict partial order.

Proof. We show that ≺R′ is irreflexive and transitive.
Irreflexivity: Assume [x]Γ ≺R

′
[x]Γ . By the definition of ≺R′ , it implies that there is a z ∈ [x]Γ

s.t. z ≺R v for every v ∈ [x]Γ . That is, we have that z ≺R z that, since ≺R is a strict partial order
(Definitions 5 and 9), cannot be the case.

Transitivity: Assume [x]Γ ≺R
′

[y]Γ and [y]Γ ≺R
′

[u]Γ . This means that there is a z ∈ [x]Γ s.t.
z ≺R v for every v ∈ [y]Γ , and there is a v ′ ∈ [y]Γ s.t. v ′ ≺R w for every w ∈ [u]Γ . Since ≺R is

transitive, it follows that there is a z ∈ [x]Γ s.t. z ≺R w for everyw ∈ [u]Γ , that is, [x]Γ ≺R
′

[u]Γ . �

Lemma 40 (∗). Let ∼R′ be as in Definition 34. Then relation ∼R′ is transitive.

Proof. Let [x]Γ ∼R
′

[y]Γ , [y]Γ ∼R
′

[u]Γ , but [x]Γ �
R′ [u]Γ . The latter implies that either

[x]Γ ≺R
′

[u]Γ or [u]Γ ≺R
′

[x]Γ ; w.l.o.g. let us assume [x]Γ ≺R
′

[u]Γ . That is, there is a z ∈ [x]Γ

s.t. z ≺R w for every w ∈ [u]Γ .

[x]Γ ∼R
′

[y]Γ implies that z ∼R v for some v ∈ [y]Γ . Assume the latter does not hold, then for
every v ∈ [y]Γ either z ≺R v or v ≺R z. It cannot be that z ≺R v for every v ∈ [y]Γ , since that

would imply [x]Γ ≺R
′

[y]Γ , so there must be some v ∈ [y]Γ s.t. v ≺R z. However the latter would
also imply, due to the transitivity of ≺R , that there is a v ∈ [y]Γ s.t. v ≺R w for every w ∈ [u]Γ ,

that is, [y]Γ ≺R
′

[u]Γ , against the hypothesis that [y]Γ ∼R
′

[u]Γ . Consequently, z ∼R v for some
v ∈ [y]Γ .

So there is a z ∈ [x]Γ s.t. z ≺R w for every w ∈ [u]Γ and there is a v ∈ [y]Γ s.t. v ∼R z. That
implies that v ≺R w for every w ∈ [u]Γ . To see it, assume that it not the case, that is, we have
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that for some w ′ ∈ [u]Γ either w ′ ≺R v or w ′ ∼R v : In the former case, we would obtain z ≺R v ,
in the latter z ∼R w ′, both taking us to contradiction. Hence, v ≺R w for every w ∈ [u]Γ , that is,

[y]Γ ≺R
′

[u]Γ , against the hypothesis. �

Lemma 41 (∗). LetKB = T ∪ D be finite. IfKB has a modular model, then it has a finite-ranked

model.

Proof. Let KB = T ∪ D be a finite defeasible knowledge base, R a model of KB and R′ a
finite interpretation constructed from R as in Definition 34. R′ is a finite interpretation, and it is

modular, since Lemmas 39 and 40 prove that ≺R′ satisfies Definition 8. Being R′ a finite modular
interpretation, it is a finite-ranked interpretation (Lemma 7).

It remains to prove that R′ is a model of KB. The proof that R′ satisfies T is straightforward
by Lemma 38. With regard to D, let C �∼ D ∈ D. Since R is a model of D, either CR = ∅, or the
height of C � D in R is lower than the height of C � ¬D, that is, there is at least an object y in
(C � D)R s.t. for every object x in (C � ¬D)R , y ≺R x . Since C , D, and ¬D are in Γ, the object

[y]Γ ∈ ΔR
′
(obtained from y ∈ (C � D)R ) must be preferred to all the objects in (C � ¬D)R , that is,

[y]Γ ≺R
′

[x]Γ for every object [x]Γ s.t. [x]Γ ∈ (C � ¬D)R
′
. Therefore, R′ � C �∼ D. �

Lemma 42 (∗). Let KB = T ∪ D be finite and C,D ∈ L. If KB has a modular model that is a

counter-model to C �∼ D, then it has a finite-ranked model that is a counter-model to C �∼ D.

Proof. It is sufficient to apply the same construction defined for the finite-model property
above. We just need to addC and D to the set Γ (and close Γ also under the subconcepts ofC and D
and their negations). If R � C �∼ D does not hold, then there is an object x s.t. x ∈ (C � ¬D)R and

x ≺R y or x ∼R y for every object y s.t. y ∈ (C � D)R . That implies that in R′ ([y]Γ, [x]Γ ) �≺R′ ,
that is, [x]Γ ≺R′ [y]Γ or [x]Γ ∼R′ [y]Γ for every y s.t. y ∈ (C � D)R , and consequently, we do not
have R′ � C �∼ D. �

Corollary 6 (∗). Let KB = T ∪ D be a finite defeasible knowledge base. If KB has a modu-

lar model R, then for every C ∈ L s.t. hR (C ) = 0 there is also a finite-ranked model R′ of KB s.t.

hR′ (C ) = 0.

Proof. GivenKB = T ∪ D, a modelR ofKB and a conceptC s.t.hR (C ) = 0, a finite modelR′
satisfying the constraint above can be defined in the same way as the model R′ from Definition 34.
We just need to addC to the set Γ (and close Γ also under the subconcepts ofC and their negations).
To see thatR′ is a model ofKB, just go again through the proof of the finite-model property above,
and check that the addition of C to Γ does not affect any of the above results.

Now, hR (C ) = 0 implies that there is an object x ∈ ΔR s.t. x ∈ CR and hR (x ) = 0. Consider now

[x]Γ . By Lemma 38, [x]Γ ∈ CR
′
. Since hR (x ) = 0, for every [y]Γ ∈ ΔR

′
it cannot be the case that

there is an object z ∈ [y]Γ s.t. z ≺R v for every v ∈ [x]Γ ; hence, the definition of ≺R′ implies that

for every [y]Γ ∈ ΔR
′
, ([y]Γ, [x]Γ ) �≺R′ , that is, hR′ ([x]Γ ) = 0, that implies hR′ (C ) = 0. �

Now, we can prove Theorem 3.

Theorem 3 (Finite-Model Property). Defeasible ALC has the finite-model property. In par-

ticular, every defeasible ALC knowledge base that has a modular model, has also a finite-ranked

model.

Proof. The result follows straightforwardly from Lemmas 41 and 42. �

Lemma 8. Given a set of ranked models of a defeasible knowledge base KB, their ranked union is

itself a ranked model of KB.
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Proof. Let R be a set of ranked models of a defeasible knowledge base KB, and let RR =def

〈ΔR, ·R,≺R〉 be its ranked union. We want to prove that also RR is a ranked model of KB, and
to do that is sufficient to prove that for every DCI C �∼ D, if R � C �∼ D for every R ∈ R, then

RR � C �∼ D.

It is easy to prove by induction on the construction of the concepts that for every object xR ∈ ΔR

and every concept C , xR ∈ CR iff x ∈ CR .
This, together with the condition that, for everyxR ∈ ΔR,hR (xR ) = hR (x ), implies that for every

concept C , hRR (C ) = min{hR (C ) | R ∈ RR}.
Now, letC �∼ D be satisfied by every R ∈ R. Hence, for every R ∈ R, eitherhR (C � D) < hR (C �
¬D) or hR (C ) = ∞. Since hRR (C ) = min{hR (C ) | R ∈ RR}, hRR (C � D) = min{hR (C � D) | R ∈
RR}, and hRR (C � ¬D) = min{hR (C � ¬D) | R ∈ RR}, it is easy to check that RR satisfies C �∼ D
too: Assume that is not the case, that is, hRR (C � ¬D) ≤ hRR (C � D) and hRR (C ) < ∞; then, we
have that min{hR (C � ¬D) | R ∈ RR} ≤ min{hR (C � D) | R ∈ RR} and min{hR (C ) | R ∈ RR} <
∞, that, since for every R ∈ R, either hR (C � D) < hR (C � ¬D) or hR (C ) = ∞, cannot be the
case. �

Lemma 9. For every KB and every C,D ∈ L, KB |=mod C �∼ D iff R � C �∼ D, for every R ∈
ModΔ(KB).

Proof. Let Δ be a countably infinite domain. For the only-if part, if KB |=mod C �∼ D, then
obviously R � C �∼ D for every R ∈ ModΔ(KB). For the if part, assume we do not haveKB |=mod

C �∼ D. Then, thanks to the finite-model property (Theorem 3), there is a modular model Rfin with
a finite domain that is a model of KB and a counter-model of C �∼ D; since the domain is finite,
the modular model Rfin is a ranked model (Lemma 7). Given Rfin, we can extend it to a model
of KB that is a counter-model of C �∼ D with a countably infinite domain in the following way:
make a countably infinite number of copies of Rfin and make the ranked union of them. Now,

let R′ = 〈ΔR′, ·R′,≺R′〉 be the result of such ranked union, that is, a ranked model of KB and a
counter-model of C �∼ D with ΔR

′
being countably infinite (it is the disjoint union of a countably

infinite number of finite domains). It is easy to build an isomorphic interpretation R = 〈Δ, ·R ,≺R〉,
once we have defined a bijection b : ΔR

′ −→ Δ, which must exist, being both ΔR
′
and Δ countably

infinite sets. We can define ·R and ≺R in the following way:

• For every A ∈ C and every x ∈ ΔR
′
, b (x ) ∈ AR iff x ∈ AR′ ;

• For every r ∈ R and every x ,y ∈ ΔR
′
, (b (x ),b (y)) ∈ r R iff (x ,y) ∈ r R′ ;

• For every x ∈ ΔR
′
, hR (b (x )) = hR′ (x ).

It is easy to prove by induction on the construction of the concepts that for every C ∈ L and

every x ∈ ΔR
′
, x ∈ CR′ iff b (x ) ∈ CR . Moreover, x ∈ min≺R′ (C

R′ ) iff b (x ) ∈ min≺R (CR ). Hence,
there is a ranked KB-model that is a counter model for C �∼ D with Δ as its domain. �

E PROOFS OF RESULTS IN SECTION 5

NB: The results marked (∗) are introduced here in the Appendix, while they are omitted in the
main text.

Lemma 10. For every knowledge base KB and every concept C , rankK B (C ) = ∞ iff KB |=mod

C � ⊥.

Proof. IfKB does not have a modular model orC is never satisfiable, then the result is straight-
forward. Let KB = T ∪ D have a modular model, and let C be satisfiable. Also, let D be ranked
into 〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉.
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From left to right, let rankK B (C ) = ∞, and assume we do not have KB |=mod C � ⊥. Together
they imply that T ∪ Drank

∞ |=mod � �∼ ¬C but T ∪ Drank
∞ |=mod C � ⊥ does not hold. Hence, due to

the FMP (Theorem 3), there is a finite-ranked model R of T ∪ Drank
∞ with the domain ΔR layered

into (LR0 , . . . ,L
R
n ), and s.t. R � � �∼ ¬C but R � C � ⊥ does not hold, that is, in ΔR there is an

object o s.t. o ∈ LRi , with 0 < i ≤ n, and o ∈ CR .
Now let us define a new model R′ simply taking the lower layer and putting it at the “top” of

our model, that is, we rearrange the interpretation in the following way:

• ΔR
′
= ΔR ;

• ·R′ = ·R ;
• LR

′
n = LR0 ;

• for every i < n, LR
′

i = LRi+1.

Clearly for every conceptD,DR
′
= DR (it is easy to prove by induction on the construction of the

concepts), and consequentlyR′ is still a model ofT . We can prove that is still also a model ofDrank
∞ .

Assume that is not the case, that is, there is a some D �∼ E ∈ Drank
∞ s.t. R � D �∼ E and not R′ �

D �∼ E. R � D �∼ E if either hR (D � E) < hR (D � ¬E) or hR (D) = ∞. It cannot be the latter, since

hR (D) = ∞ corresponds to DR = ∅, and we would have also DR
′
= ∅ and hR′ (D) = ∞. Hence, it

must behR (D � E) < hR (D � ¬E), whilehR (D � E) �< hR (D � ¬E). LethR (D � E) = i andhR (D �
¬E) = j with i < j. If i > 0, then hR′ (D � E) = i − 1 and hR′ (D � ¬E) = j − 1, and hR′ (D � E) <
hR′ (D � ¬E) again; hence it must be hR (D � E) = 0, that is, hR (D) = 0, but that is incompatible
withD �∼ E ∈ Drank

∞ , sinceT ∪ Drank
∞ |=mod � �∼ ¬D, that is,hR (D) > 0. Consequently,R′ too must

be a model of T ∪ Drank
∞ .

We have assumed that in R there is an object o s.t. o ∈ CR and o ∈ LRi for some 0 < i ≤ n. Re-

peating the procedure used to define R′ for i times, we obtain a model R∗ of T ∪ Drank
∞ s.t. o ∈ CR∗

and o ∈ LR∗0 . However, since rankK B (C ) = ∞ implies T ∪ Drank
∞ |=mod � �∼ ¬C , this cannot be the

case. We conclude that if rankK B (C ) = ∞, then KB |=mod C � ⊥.
From right to left, let KB |=mod C � ⊥ but rankK B (C ) � ∞. The latter implies that there is a

model of T ∪ Drank
∞ that does not satisfy � �∼ ¬C , that is, does not satisfy C � ⊥. Referring again

to the FMP (Theorem 3), we can say that there is a finite-ranked model R of T ∪ Drank
∞ that does

not satisfy C � ⊥. Let k be the number of layers in R.
Now consider T ∪ (Drank

n ∪ Drank
∞ ). For each D �∼ E ∈ Drank

n there must be a model in which
D � E is not exceptional, that is, it is satisfied in the layer 0. As a consequence, still using the FMP
(Corollary 6), for each D �∼ E ∈ Drank

n there must a finite-ranked model R
D �∼ E

of T ∪ (Drank
n ∪

Drank
∞ ) s.t. hR

D
�∼ E

(D �∼ E) = 0.

Build a ranked interpretation Rn as follows:

• for every D �∼ E ∈ Drank
n , let R

D �∼ E
be a finite-ranked model of T ∪ (Drank

n ∪ Drank
∞ ) in

which hR
D
�∼ E

(D �∼ E) = 0.

• Let R′ = 〈ΔR′, ·R′,≺R′〉 be the ranked union of such sets. R′ is a model ofDrank
n (Lemma 8)

s.t. for every D �∼ E ∈ Drank
n , hR

D
�∼ E

(D �∼ E) = 0. Since Drank
n is finite, it has been obtained

from a finite set of finite models and so it is a finite-ranked model. Let m be the number of
layers in R′.

• From R′ and R define a finite-ranked interpretation Rn = 〈ΔRn , ·Rn ,≺Rn 〉 as follows:

• ΔRn = ΔR ∪ ΔR
′
;

• ARn = AR ∪AR′ for every A ∈ C;

ACM Transactions on Computational Logic, Vol. 22, No. 1, Article 1. Publication date: November 2020.



Principles of KLM-style Defeasible Description Logics 1:37

• r Rn = r R ∪ r R′ for every r ∈ R;

• for every i ≤ m, LRn

i = LR
′

i ;

• for everym < i ≤ (m + k ), LRn

i = LR
(i−(m+1))

.

Informally, we build the model Rn by adding R on top of R′. It is easy to prove by induction on
the construction of the concepts that every object in Rn satisfies a concept D iff it satisfies D also
in the original model, R or R′. As a consequence, we do not have Rn � C � ⊥. Also, it is easy to
prove that Rn is a model of T ∪ (Drank

n ∪ Drank
∞ ): R′ is a model of Drank

n with at layer 0 an object

satisfying D � E for each D �∼ E ∈ Drank
n , and both R and R′ are models of T ∪ Drank

∞ .

Now consider T ∪ (Drank
(n−1)

∪ Drank
n ∪ Drank

∞ ). Using the same procedure defined for Rn , we

can build a model Rn−1, obtained doing the ranked union of a finite set of finite models of
T ∪ (Drank

(n−1)
∪ Drank

n ∪ Drank
∞ ) and adding on top Rn . Rn−1 will be a finite-ranked model of

T ∪ (Drank
(n−1)

∪ Drank
n ∪ Drank

∞ ) s.t. Rn−1 � C � ⊥ does not hold.

We can go on with this procedure until we define a finite-ranked model R0 of T ∪ (Drank
0 ∪

. . . ∪ Drank
n ∪ Drank

∞ ). That is, R0 is a model of T ∪ D s.t. we do not have R0 � C � ⊥, against the
hypothesis that KB |=mod C � ⊥. �

To prove Theorem 4, we will use the following lemma.

Lemma 43 (*). Let KB = T ∪ D be a defeasible knowledge base having a modular model, O
its big ranked model, and Δ the countably infinite domain used to define O. For every C �∼ D ∈ D,

rankK B (C � D) = i iff there is a model RΔ ∈ ModΔ(KB) s.t. hRΔ (C � D) = i .

Proof. First, we observe that the exceptionality function in Definition 23 is correctly captured
in the model O, that is, for every C ∈ L, KB |=mod � �∼ ¬C iff O � � �∼ ¬C . Indeed, by Lemma 9,
a concept C is exceptional w.r.t. KB iff RΔ � � �∼ ¬C , for every RΔ ∈ ModΔ(KB), which imme-
diately corresponds to O � � �∼ ¬C .

Since RΔ � KB for every RΔ ∈ ModΔ(KB), if hRΔ (C ) = i , it is immediate that rankK B (C ) ≤ i ,
otherwise it would be hRΔ (C ) > i for every RΔ ∈ ModΔ(KB). We have to prove that for every
C �∼ D ∈ D, if rankK B (C � D) = i , then there is a RΔ ∈ ModΔ(KB) s.t. hRΔ (C � D) = i . In case i =
∞, Lemma 10 guarantees that if rankK B (C � D) = ∞, then for all the RΔ ∈ ModΔ(KB), hRΔ (C �
D) = ∞. In case i < ∞, we can prove it by induction on the ranking value i .

LetC �∼ D ∈ D, and let rankK B (C � D) = i . For i = 0, we already have all that is needed to prove
that there is a RΔ ∈ ModΔ(KB) s.t. RΔ � � �∼ ¬(C � D) is not the case:

• rankK B (C � D) = 0, iff we do not have KB |=mod � �∼ ¬(C � D) (Definition 23);
• KB |=mod � �∼ ¬(C � D) does not hold iff there is a RΔ ∈ ModΔ(KB) s.t. RΔ � � �∼ ¬(C �

D) is not the case (by Lemma 9);
• We do not have RΔ � � �∼ ¬(C � D) iff hRΔ (C � D) = 0.

For i > 0, we can define a modular model R of KB as follows:
Let C �∼ D ∈ D with rankK B (C � D) = i , and let Drank

≥i be the subset of D containing the DCIs

with a ranking value of at least i , andDrank
<i = D \ Drank

≥i . Let R′ be a modular model of T ∪ Drank
≥i

such that hR′ (C � D) = 0. Such a model must exist, since rankK B (C � D) = i , that is, C � D is
not exceptional in T ∪ Drank

≥i . We can assume that R′ has a finite domain, given the finite-model
property (Corollary 6), and hence it is a ranked model (Lemma 7).

For each DCI D �∼ E ∈ Drank
<i , that is, such that rankK B (D � E) = j for some j < i , let RD�E ∈

ModΔ(KB) be a model of KB satisfiying D � E s.t. hRD�E
(D � E) = j. The induction hypothesis

guarantees that such a model exists for each such DCI.
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Now, we define a new interpretation R′′ = 〈ΔR′′, ·R′′,≺R′′〉 in the following way:

• ΔR
′′
= ΔR

′ ∪⋃(C �∼ D∈Drank
<i

) ΔRC�D ;

• For every concept nameA ∈ C and every x ∈ ΔR
′′
, x ∈ AR′′ iff one of the two following cases

holds: either x ∈ ΔRD�E for some D �∼ E ∈ Drank
<i and x ∈ ARC�D , or x ∈ ΔR

′
and x ∈ AR′ ;

• For every role name r ∈ R and every x ,y ∈ ΔR
′′
, (x ,y) ∈ r R′′ iff one of the two following

cases holds: either x ,y ∈ ΔRC�D for someC �∼ D ∈ Drank
<i and (x ,y) ∈ r R′′ , or x ,y ∈ ΔR

′
and

(x ,y) ∈ r R′ ;
• For every x ∈ ΔR

′′
, hR′′ (x ) = j iff one of the two following cases holds: either x ∈ ΔRD�E for

some D �∼ E ∈ Drank
<i and and hRD�E

(x ) = j, or x ∈ ΔR
′

and hR′ (x ) = j − i .

The idea is to create a model ofKB that guarantees for a specific inclusionC �∼ D ∈ D that the
height of C in the model corresponds exactly to the rank of C . That is, given an inclusion C �∼ D
that has rank i , we have built a ranked interpretation R′′ in which C has height i . Now, we need
to:

• Prove that R′′ is a model of KB;
• Show that an isomorphic model to R′′ is in ModΔ(KB).

It can easily be proven that R′′ is a model of KB: First, we prove by induction on the con-

struction of concepts that, for every x ∈ ΔR
′′
, x ∈ DR′′ iff the corresponding object falls under D in

the original model; this grants us that R′′ satisfies T . About the satisfaction ofD, referring to the
height values that have been assigned to each object inR′′, we can prove that for everyD �∼ E ∈ D,
hR′′ (D � E) < hR′′ (D � ¬E) (or hR′′ (D) = ∞). Hence, R′′ is a model ofKB. Also, notice that in R′,
we must have an object o s.t. hR′ (o) = 0 and o ∈ (C � D)R

′
. The construction of of R′′ implies that

hR′ (o) = i and o ∈ (C � D)R
′′
. That is, R′′ is a model of KB in which hR′′ (C � D) = i .

ΔR
′′

has been created unifying a finite number of model with the countably infinite domain Δ
plus the finite domain ΔR

′
, hence ΔR

′′
has a countably infinite domain, and there is a model R′′Δ

that is isomorphic to R′′ and has Δ as domain. �

Using Lemma 43, we can prove Theorem 4.

Theorem 4. LetKB be a defeasible knowledge base having a modular model. A statement α is in

the rational closure of KB iff KB |=rat α .

Proof. LetKB be a defeasible knowledge base with a modular model, O the big ranked model
ofKB, and Δ the countably infinite domain used to define O.KB |=rat α iff O � α (Definition 22),
so we need to prove that O � α iff α is in the rational closure of KB. We first prove the result
where α is a DCI (of the form C �∼ D), that is, we need to prove that O � C �∼ D iff rankK B (C �
D) < rankK B (C � ¬D) or rankK B (C ) = ∞. In turn, that means that we need to prove that for
every DCIC �∼ D,hO (C � D) < hO (C � ¬D) orhO (C ) = ∞ iff rankK B (C � D) < rankK B (C � ¬D)
or rankK B (C ) = ∞. Such a result follows immediately if we can prove that, for every concept C ,
hO (C ) = rankK B (C ), and that is what we are going to do.

An immediate consequence of Lemma 43 is that, for every C �∼ D ∈ D, hO (C � D) =
rankK B (C � D). Being O a model of D, if C �∼ D ∈ D then hO (C � D) = hO (C ) and rankK B (C �
D) = rankK B (C ). So, for every C �∼ D ∈ D, hO (C ) = hO (C � D) = rankK B (C � D) = rankK B (C ).
Now, we extend such a result to any concept C , using a construction that is in line with the one
used to prove Lemma 43.

SinceO � KB, ifhO (C ) = i , it is immediate that rankK B (C ) ≤ i , otherwise it would behO (C ) >
i . We have to prove that for every concept C , if rankK B (C ) = i , then hOΔ (C ) = i , that is, there is
a RΔ ∈ ModΔ(KB) s.t. hRΔ (C ) = i . In case i = ∞, Lemma 10 guarantees that if rankK B (C ) = ∞,
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then for all the RΔ ∈ ModΔ(KB), hRΔ (C ) = ∞. In case i < ∞, we can prove it by induction on the
ranking value i .

Let rankK B (C ) = i . For i = 0, we already have all that is needed to prove that there is a RΔ ∈
ModΔ(KB) s.t. RΔ � � �∼ ¬(C ) is not the case:

• rankK B (C ) = 0, iff we do not have KB |=mod � �∼ ¬(C ) (Definition 23);
• We do not haveKB |=mod � �∼ ¬(C ) iff there is a RΔ ∈ ModΔ(KB) s.t. RΔ � � �∼ ¬(C ) does

not hold (by Lemma 9);
• It is not the case that RΔ � � �∼ ¬(C ) iff hRΔ (C ) = 0.
• hO (C ) = 0 iff there is a RΔ ∈ ModΔ(KB) s.t. hRΔ (C ) = 0.

For i > 0, we can define a modular model R of KB as follows:
Let rankK B (C ) = i , and, as in Lemma 43, letDrank

≥i be the subset ofD containing the DCIs with

a ranking value of at least i , andDrank
<i = D \ Drank

≥i . Let R′ be a modular model of T ∪ Drank
≥i such

that hR′ (C ) = 0. Such a model must exist, since rankK B (C ) = i , that is,C is not exceptional in T ∪
Drank
≥i . We can assume that R′ has a finite domain, given the finite-model property (Corollary 6),

and hence it is a ranked model (Lemma 7).
Then, we define an interpretation R′′ exactly as done in the proof of Lemma 43, and, exactly as

in Lemma 43, we can prove that R′′ is a model of KB with a countably infinite domain and s.t.
hR′′ (C ) = i .

That implies that there is a model R′′Δ ∈ ModΔ(KB) that is isomorphic to R′′, with hR′′Δ
(C ) = i .

Since R′′Δ is used in the construction of O, hO (C ) ≤ i; since rankK B (C ) = i , hO (C ) ≥ i . Hence,
hO (C ) = i .

For the case where α is a GCI (of the formC � D), suppose thatC � D is in the rational closure
of KB. By definition this means that rankK B (C � ¬D) = ∞. By Lemma 10, we then have that
KB |=mod C � ¬D � ⊥, which means that KB |=mod C � D. And, since O is a ranked model of
KB, it follows that KB |=rat C � D. Conversely, suppose that O is a ranked model of C � D.
Then O is a ranked model ofC � ¬D �∼ ⊥, from which it follows, by Lemma 9, thatKB |=mod C �
¬D �∼ ⊥. It then follows from Lemma 10 that rankK B (C � ¬D) = ∞. And this mean, by definition,
that C � D is in the rational closure of KB. �

Lemma 11. For KB = T ∪ D, if T |=
�
D � ¬C , then C �∼ D is exceptional w.r.t. T ∪ D.

Proof. It suffices to prove that if we do not have T ∪ D |=mod � �∼ ¬C , then T |=
�
D � ¬C

does not hold. So, suppose that T ∪ D |=mod � �∼ ¬C is not the case. This means there is a modular

model R of T ∪ D for which we have an x ∈ ΔR such that x ∈ CR . Let I be the classical inter-
pretation associated with R. It follows immediately that I is a model of T and that x ∈ (

�
D)I ,

but that x � (¬C )I . �

Lemma 44 (∗). Let KB = T ∪ D. Then (i) KB ⊆ Cnrat (KB) and (ii) Cnrat (KB) induces a de-

feasible subsumption relation �∼ K Brat =def {(C,D) | K B �rat C �∼ D} that is rational.

Proof. Let KB = T ∪ D.
Proving (i): Assume C � D ∈ T . KB �rat C � D iff T ∗ |= C � D; since T ⊆ T ∗, T ⊆

Cnrat (KB). Assume thatC �∼ D ∈ D. EitherC �∼ D ends up inD∗∞, or there will be an i (0 ≤ i ≤ n)
s.t. rk(C ) = rk(C �∼ D) = i . In the former case, C � D is in T ∗, and so T ∗ |= C � D, i.e., KB �rat

C �∼ D. In the latter case, |= Ei � ¬C � D, and so T ∗ |= Ei �C � D, i.e., C �∼ D ∈ Cnrat (KB).
Hence, T ∪ D ⊆ Cnrat (KB).

Proving (ii): Let �∼ K Brat =def {(C,D) | K B �rat C �∼ D}. We show �∼ K Brat satisfies all rationality
properties.
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• (Ref). Since |= C � C is valid for anyC ∈ L, we have that T ∗ |= Ei �C � C for any T ∗ and

Ei .

• (LLE). C �∼ E ∈ Cnrat (KB) implies that T ∗ |= Ei �C � E for some i (or T ∗ |= C � E, if

rk(C ) = ∞). Since |= C ≡ D, Ei is the lowest i s.t. we do not have T ∗ |=
�
Ei � ¬D, and

T ∗ |= Ei � D � E, too.

• (And). T ∗ |=
�
Ei �C � D and T ∗ |=

�
Ei �C � E (possibly without

�
Ei , if C has an

infinite rank), hence T ∗ |=
�
Ei �C � D � E, that is, C �∼ D � E ∈ Cnrat (KB).

• (Or). T ∗ |=
�
Ei �C � E for some i and T ∗ |=

�
Ej � D � E for some j. Assume that i ≤ j

and i < ∞, that is, |=
�
Ei �

�
Ej . Then, since we do not have T ∗ |=

�
Ei � ¬C , we do

not haveT ∗ |=
�
Ei � ¬(C � D) either. MoreoverT ∗ |=

�
Ej � D � E and |=

�
Ei �

�
Ej

imply that T ∗ |=
�
Ei � D � E. So, T ∗ |=

�
Ei � (C � D) � E. The proof is analogous for

j ≤ i with j < ∞, or if i and j correspond to∞.

• (RW).C �∼ D ∈ Cnrat (KB) if T ∗ |=
�
Ei �C � D for some

�
Ei (or T ∗ |= C � D, if rk(C ) =

∞). Since |= D � E, T ∗ |=
�
Ei �C � E.

• (CM). If rk(C ) = i < ∞, then T ∗ |=
�
Ei �C � D and T ∗ |=

�
Ei �C � E for some

�
Ei .

Since T ∗ |=
�
Ei �C � D and we do not have T ∗ |=

�
Ei � ¬C , T ∗ |=

�
Ei � ¬(C � D)

does not hold; otherwise, we would have T ∗ |=
�
Ei �C � D � ¬D, i.e., T ∗ |=

�
Ei � ¬C .

Hence, we haveC � D �∼ E ∈ Cnrat (KB), since T ∗ |=
�
Ei �C � D � E. If rk(C ) = ∞, then

we have T ∗ |= C � ⊥, and the proof is trivial.

• (RM). If rk(C ) = i < ∞, then T ∗ |=
�
Ei �C � E and T ∗ |=

�
Ei �C � ¬D does not hold

for some
�
Ei . Since we do not have T ∗ |=

�
Ei �C � ¬D, T ∗ |=

�
Ei � ¬(C � D) does

not hold; otherwise, we would have T ∗ |=
�
Ei �C � ¬D. Hence, we have C � D �∼ E ∈

Cnrat (KB), since T ∗ |=
�
Ei �C � D � E. If rk(C ) = ∞, then we have T ∗ |= C � ⊥, and

the proof is trivial. �

The following lemma states that, as in the propositional case [70], our procedure correctly man-
ages the classical information, that is, an axiomC �∼ ⊥ is in the rational closure ofKB if and only
if it is also a modular consequence of KB.

Lemma 45 (∗). Let KB = T ∪ D and assume C �∼ D ∈ D. Then KB |=mod C �∼ ⊥ iff rk(C ) = ∞
iff T ∗ |= C � ⊥.

Proof. Let KB = T ∪ D.
For the only-if part,KB |=mod C �∼ ⊥ implies that every rational subsumption relation contain-

ing KB must satisfy also C �∼ ⊥. Hence, we have that KB �rat C �∼ ⊥, since Cnrat (KB) induces
a rational subsumption relation extending KB (Lemma 44). From Definition 27, we know that
KB �rat C �∼ ⊥ is possible only ifC is always negated in the ranking procedure, i.e., T ∗ |= C � ⊥.

For the if part, we define fromKB a new knowledge baseKB∗ =def T ∗ ∪ D∗, withT ∗ obtained
from T by adding all the sets {C � D | C �∼ D ∈ D∗∞} that we obtain at each iteration of func-
tion ComputeRanking(·). Let us denote with D1

�, . . . ,Dn
� such sets. Assume that T ∗ |= C � ⊥,

but that we do not have KB |=mod C �∼ ⊥, i.e., there is a modular model of KB in which C is

non-empty. Let R be such a model, with an object x falling under CR . Since T ∗ |= C � ⊥, there
must be a GCI E � F in someDi

� that is not satisfied, that is, given the nature of the GCIs in every
Dn
� (T ∗ |= E � ⊥ for every E � F contained in some Dn

�), this means that there is a subsumption

E � ⊥ that is not satisfied in R. Therefore, there must be an object y falling under ER . Hence, as-
suming E � F ∈ Di

�, since T ∪ D1
� ∪ . . . ∪ Di−1

� |=
�
{¬G � H | G � H ∈ Di

�} � ¬E, either R �
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T ∪ D1
� ∪ . . . ∪ Di−1

� andy ∈ (G � ¬H )R for someG � H ∈ Di
� (Case 1 below), or we do not have

R � T ∪ D1
� ∪ . . . ∪ Di−1

� (Case 2 below).

Case 1. Since R � KB, R is also a model of G �∼ H , which is an element of D. Hence,

there must be an object y such that y ≺R x (remember that x ∈ CR ) and y ∈ (G � H )R .
Again, since G � H ∈ Di

� (which implies T ∪ D1
� ∪ . . . ∪ Di−1

� |=
�
{¬G � H | G � H ∈

Di
�} � ¬G) and R � T ∪ D1

� ∪ . . . ∪ Di−1
� , there must be a GCI I � L ∈ Di

� such that

y ∈ (I � ¬L)R , and we need an object z such that z ≺R y and z ∈ (H � I )R , and so on...This
procedure creates an infinitely descending chain of objects, and, since the number of the
antecedents of the axioms inDi

∞ is finite, it cannot be the case, since the model would not
satisfy the smoothness condition for the concept

⊔{C | C �∼ D ∈ Di
∞} (see Definition 5).

Case 2. If it is not the case that R � T ∪ D1
� ∪ . . . ∪ Di−1

� , then R does not satisfy some

E � F ∈ D j
� for some j < i , and therefore there must be an object falling under ER . Again,

it is either Case 1 or Case 2. Nevertheless, since at every iteration of Case 2 we pick a lower

value j for D j
� and we have a finite sequence of D j

�, we know that after some steps (in

the worst case, when we reach D0
�), we necessarily fall into Case 1, which cannot be the

case. �

An immediate consequence of Lemma 45 binds preferential consistency (existence of a prefer-
ential model—cf. Definition 6) to classical consistency.

Corollary 7 (∗). Let KB = T ∪ D. Then KB |=mod � �∼ ⊥ iff T ∗ |= � � ⊥.

We can now prove that the knowledge basesKB = T ∪ D andKB∗ = T ∗ ∪ D∗ (in rank nor-
mal form) are modularly equivalent.

Lemma 12. Let KB = T ∪ D and let KB∗ = T ∗ ∪ D∗ be obtained from KB through func-

tion ComputeRanking(·). Then KB and KB∗ are modularly equivalent.

Proof. Given KB = T ∪ D, the function ComputeRanking(KB) outputs a knowledge
base KB∗ = T ∗ ∪ D∗, in which the iteration of lines 5–13 identifies a (possibly empty) set
{C1

�∼ D1, . . . ,Cn
�∼ Dn } of always exceptional defeasible subsumptions, that is moved from D to

T . That is, we have T ∗ = T ∪ {C1 � D1, . . . ,Cn � Dn } and D∗ = D \ {C1
�∼ D1, . . . ,Cn

�∼ Dn }. It
is sufficient to prove thatKB |=mod Ci � ⊥ andKB∗ |=mod Ci

�∼ Di for everyCi
�∼ Di (1 ≤ i ≤ n).

Let Ci
�∼ Di ∈ D \ D∗. It means that, at some iteration through Lines 4–14 of func-

tion ComputeRanking(·), we have T ∗ |=
�
D∗∞ � ¬Ci , which implies that T ∗ ∪ D∗�∞ |= � � ¬Ci ,

where D∗�∞ =def {C � D | C �∼ D ∈ D∗∞}). Since every D∗�∞ created at every iteration is contained
in the final T ∗, using such final T ∗, we have that T ∗ |= Ci � ⊥. Hence, by Lemma 45, we have
that KB |=mod Ci

�∼ ⊥, i.e., KB |=mod Ci � ⊥.
However, if Ci

�∼ Di ∈ D \ D∗, then Ci � Di ∈ T ∗, and hence KB∗ |=mod Ci
�∼ Di by supra-

classicality (cf. proof of Lemma 46 below). �

Now, we are justified in using the rank normal form KB∗ = T ∗ ∪ D∗ to analyse the rational
closure of the knowledge base KB = T ∪ D. Hence, in what follows, we shall assume that the
knowledge bases we are working with are already in rank normal form (and therefore D∞ = ∅).

In the next lemma, we observe that the inference relation �rat respects the preferential conclu-
sions ofKB w.r.t. assertions of the form � �∼C , another desideratum proven for the propositional
case by Lehmann and Magidor [70].

Lemma 46 (∗). For every C ∈ L, KB |=mod � �∼C iff KB �rat � �∼C .

Proof. First, recall that KB �rat � �∼C if T ∗ |=
�
D∗ � C (cf. Definition 27).
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For the if part, first, we need to prove two properties of |=mod, namely, supra-classicality (Sup)
and one half of the deduction theorem (S):

(Sup)
C � D

C �∼ D
.

The derivation of Sup is straightforward: remember thatC �∼C holds (Ref), assumeC � D and then
apply (RW):

(S)
C �∼ D

� �∼ ¬C � D
.

To see that (S) holds, assume C �∼ D and note that |= D � ¬C � D; we derive by (RW) C �∼ ¬C �
D. Since |= ¬C � ¬C � D, we obtain ¬C �∼ ¬C � D by (Sup). Then apply (Or) to C �∼ ¬C � D and
¬C �∼ ¬C � D, obtaining � �∼ ¬C � D.

Now, we have to prove that if T ∗ |=
�
D∗ � C , then KB |=mod � �∼C .

From Lemma 12, we know that T ∗ ∪ D∗ is in the modular consequences of KB. Applying (S)
to all DCIsC �∼ D inD∗, we haveKB |=mod � �∼ ¬C � D from each of them. Applying (And) to all

these DCIs, we have � �∼
�
D′ and, by (RW’), we obtain � �∼C .

The only-if part is an immediate consequence of Lemma 44. �

Lemma 47 (∗). For every KB = T ∪ D and every C ∈ L, rankK B (C ) = ∞ iff rk(C ) = ∞.

Proof. Let KB = T ∪ D and transform it into a modularly equivalent knowledge base D′
composed of only DCIs (see Lemma 2). Since the model O of the rational closure ofKB must also
be a model of D′, we can easily derive from Lemma 9 that KB |=rat C �∼ ⊥ (that is, rankK B (C ) =
∞) iff KB |=mod C �∼ ⊥. From Lemma 45, we have that KB |=mod C �∼ ⊥ iff rk(C ) = ∞, hence the
result. �

Lemma 13. For every defeasible knowledge base KB = T ∪ D and every C ∈ L, rankK B (C ) =
rk(C ).

Proof. From Lemmas 45 and 47 and Lemma 12, we can see that, given a knowledge baseKB =
T ∪ D (possibly with an empty T ), we can define a modularly equivalent knowledge baseKB∗ =
T ∗ ∪ D∗ such that all the classical information implicit in D is moved into T ∗. KB∗ can be
defined identifying the elements of D that have ∞ as ranking value, and Lemma 47 shows that
w.r.t. the value∞, rankK B (·) and rk(·) are equivalent, while Lemma 12 tells us thatKB andKB∗
are modularly equivalent. Once we have definedKB∗, Lemma 46 implies that a conceptC ∈ L is
exceptional w.r.t. |=rat (KB |=mod � �∼ ¬C) iff KB �rat � �∼ ¬C . Hence, the two ranking functions
rankK B (·) and rk(·) give back exactly the same results. �

Theorem 5. Let KB = T ∪ D and let C,D ∈ L. Then KB �rat C �∼ D iff KB |=rat C �∼ D.

Proof. Since we have already proven Lemma 13, here we can use rk(·) to indicate indifferently
the equivalent ranking functions rankK B (·) and rk(·).

For the only-if part, assume KB |=rat C �∼ D. That means that either rk(C � ¬D) > rk(C ) or

rk(C ) = ∞. In the first case, it means that there is some i , 0 ≤ i ≤ n, such that T ∗ |=
�
Ei � ¬C

does not hold and T ∗ |=
�
Ei � ¬(C � ¬D), hence T ∗ |=

�
Ei �C � D, i.e., KB �rat C �∼ D. In

the second case, we have T ∗ |= C � ⊥, which implies KB �rat C �∼ D.
For the if part, assume KB �rat C �∼ D. Then either there is some i that is the lowest number

such that T ∗ |=
�
Ei � ¬C does not hold (hence rk(C ) = i), or T ∗ |= C � ⊥. In the first case, we

have also that T ∗ |=
�
Ei �C � D, which implies T ∗ |=

�
Ei � ¬(C � ¬D), i.e., rk(C � ¬D) > i .

In the second case, rk(C ) = ∞, which implies KB |=rat C �∼ D. �
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Corollary 4. Checking rational entailment is exptime-complete.

Proof. Observe that function RationalClosure(·) performs at most n + 2 (classical) subsump-
tion checks, where n is the number of ranks assigned to elements of D. So the number of sub-
sumption checks performed by function RationalClosure(·) is O ( |D|). Furthermore, we need to
call function ComputeRanking(·) to obtain the knowledge baseKB∗ = T ∗ ∪ D∗ and the sequence
E0, . . . ,En , which are needed as input to function RationalClosure(·). First bear in mind that func-
tion Exceptional(·), with E as input, performs at most |E | classical subsumption checks. From this,
and an analysis of function ComputeRanking(·), it follows that the number of subsumption checks
performed by function ComputeRanking(·) isO ( |D|3). Since we know that subsumption checking
w.r.t. general TBoxes in ALC is exptime-complete [1, Chapter 3], the result follows. �
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